ZDNet至顶网软件频道消息:据科技部网站消息,以实现人、车、路协同控制为目标的未来智能车路协同技术是当今国际智能交通领域的前沿和研究热点,受到学术界和产业界的广泛关注,主题为“未来智能车路协同技术”的西苑沙龙在北京西苑饭店举行。
会议认为,把人、 车、路协同起来,形成新型的智能交通体系框架,需要加强国家层面的顶层设计,通过整体规划来整合资源,以“政产学研用”协同创新的发展模式,积极推进车路协同的标准和体系化建设。同时,要从国家战略层面部署相关计划或项目,整体推进人车路协同等核心关键技术及系统设备的研发,形成符合中国特点的车路协同核心技术和产业布局。
来自863计划现代交通技术领域主题专家、交通运输部门行业专家以及美日等著名大学和研究机构的12位专家学者应邀参加了会议,科技部高技术中心相关同志也参加了本次会议。高技术中心袁建湘副主任和清华大学张毅教授分别主持了本届学术研讨会。
会上,清华大学张毅教授做了题为“未来智能车路协同技术发展趋势”的主题报告,交通运输部公路科学研究院王笑京总工程师,美国威斯康星大学麦迪逊分校教授、国家级专家冉斌教授,以及重庆长安汽车公司工程研究总院、国家级专家黎予生总工程师分别就Cooperative-ITS国际发 展趋势、美国车路协同和车联网技术展望以及智能车辆关键技术发展趋势等做了专题报告。与会专家分别从车路协同技术概念、应用前景、发展趋势、面临挑战及发 展对策等方面展开热烈的讨论和思想交锋。
好文章,需要你的鼓励
随着AI的使用、创新和监管混乱超过认可的标准,IT领导者只能开发内部方法来减轻AI风险,依靠框架、工具和他们的同事来正确使用AI。
几年前,当澳大利亚红十字会(Australian Red Cross)这个社区服务慈善机构开始进行数字化转型的时候,发现有很多不同的系统无法协同工作。如今,经过数据梳理和发挥作用,可以满足不断变化的需求。
在此次活动中,IBM展示了最先进的IBM Quantum Heron计算机是如何以比以前更高的精度和速度执行复杂的量子算法,同时为进行高级分子模拟的新方法铺平了道路。
想象一下,一个人工智能系统不仅能阅读文本或识别图像,还能够同时读、写、看、听和创造。这其实就是多模态人工智能的精髓。这些先进的多模态人工智能系统可以同时处理和整合多种形式的数据,包括文本、图像、音频甚至视频。这就像是赋予了人工智能一整套的感官。