ZDNet至顶网软件频道消息:据科技部网站消息,以实现人、车、路协同控制为目标的未来智能车路协同技术是当今国际智能交通领域的前沿和研究热点,受到学术界和产业界的广泛关注,主题为“未来智能车路协同技术”的西苑沙龙在北京西苑饭店举行。
会议认为,把人、 车、路协同起来,形成新型的智能交通体系框架,需要加强国家层面的顶层设计,通过整体规划来整合资源,以“政产学研用”协同创新的发展模式,积极推进车路协同的标准和体系化建设。同时,要从国家战略层面部署相关计划或项目,整体推进人车路协同等核心关键技术及系统设备的研发,形成符合中国特点的车路协同核心技术和产业布局。
来自863计划现代交通技术领域主题专家、交通运输部门行业专家以及美日等著名大学和研究机构的12位专家学者应邀参加了会议,科技部高技术中心相关同志也参加了本次会议。高技术中心袁建湘副主任和清华大学张毅教授分别主持了本届学术研讨会。
会上,清华大学张毅教授做了题为“未来智能车路协同技术发展趋势”的主题报告,交通运输部公路科学研究院王笑京总工程师,美国威斯康星大学麦迪逊分校教授、国家级专家冉斌教授,以及重庆长安汽车公司工程研究总院、国家级专家黎予生总工程师分别就Cooperative-ITS国际发 展趋势、美国车路协同和车联网技术展望以及智能车辆关键技术发展趋势等做了专题报告。与会专家分别从车路协同技术概念、应用前景、发展趋势、面临挑战及发 展对策等方面展开热烈的讨论和思想交锋。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。