ZDNet至顶网软件频道消息:某电力公司用户反映访问公司服务器非常慢,网络基本上处于瘫痪状态。用户通过网管软件对网络设备和服务器的性能进行监控,找出问题是交换机CPU利用率达99%,而服务器性能正常。对于交换机的CPU高负荷运转,通过各方面排查最终没有找到问题原因。这种故障问题持续已有2天,在部署科来回溯分析系统后,对内网核心交换机(全端口RX镜像)的流量进行了7×24小时监控,通过回溯分析系统提取出问题时段的通信数据,我们定位到导致网络瘫痪的主要原因。用户的网络环境示意如下:
由于本案例中核心交换出现异常,需要部署科来回溯分析系统对内网进行全面的监控和分析,因此采用的是核心交换全端口镜像的方式。
案例分析
由于时间原因无法到现场排查问题,对于核心交换机CPU利用率99%,开始我们认为是流量拥塞或者蠕虫疯狂扫描所导致。在故障时间里网管下载回溯设备中的数据包回传,数据流量478MB左右,峰值大约100Mbps,抓包时间不足2分钟。峰值流量(核心交换全端口)都在100Mbps一下,对于千兆网络来说这种规模的流量不足以造成交换机高使用率。如下图:
通过科来便携式软件将流量导入,在概要统计表的数据包分布中,发现网络中存在异常小包(小于255大于64),流量过多,每秒钟2万多个小包。在短时间内产生大量小包,有以下几种可能:ARP广播、DOS攻击、蠕虫扫描、UDP攻击等。因此在分析的时候一般要抓住以下几点,每秒数据包个数、发包数量、包的收发比。我们以IP端点为基准对每秒数据包个数进行排序,可以发现172.168.46.81地址在一秒钟内发出13882个数据包,在不到2分钟时间里发出294094个数据包,且包的发收比很大。为了进一步分析此地址异常行为,对它进行定位分析。
直接对异常此地址产生的UDP报文会话进行深入分析,如下图:
通过上图可以看出内网主机172.168.46.81向104.96.172.0和184.89.172.0(非法地址)及172.168.46.254疯狂发包,源端口为1102、目标端口6900。在不到2分钟时间里产生将近60万个UDP小包。在短时间里核心交换机对于收到目标是104.96.172.0、184.89.172.0需要进行三层转发,而收到目标是172.168.46.254且端口是6900(核心交换的地址)核心交换机会产生大量ICMP端口不可达信息。对此核心交换在短时间里处理主机172.168.46.81产生巨多数据报文,还要加上正常访问流量,最后不得不导致CPU利用率过高。
分析结论
1、用户正常通讯流量,不会对核心交换造成高使用率。
2、主机172.168.46.81感染恶意程序对交换机实施UDP泛洪攻击,是导致此次网络瘫痪的原因。
分析完后通过和网管沟通,将此主机网线断开,核心交换利用率很快正常,网络随之也平稳运行。对于此次网络故障超出我们的想象,一台普通主机在几十秒之内就可以将市级规模的网络攻击瘫痪。真可谓四两拨千斤!!!对于网络运维部门当前网络注重资源、设备的管理和监控,建议加强对网络中通讯流量的透视分析。
好文章,需要你的鼓励
英伟达在SIGGRAPH大会上发布了全新的AI世界模型、库和机器人开发基础设施。其中最引人注目的是Cosmos Reason,这是一个70亿参数的"推理"视觉语言模型,专门用于物理AI应用和机器人。新发布的还包括Cosmos Transfer-2模型,能够从3D仿真场景加速合成数据生成,以及速度优化版本。公司还推出了神经重建库、RTX Pro Blackwell服务器和DGX Cloud云平台,旨在为机器人开发提供完整的解决方案。
本研究针对大语言模型中普遍存在的偏见问题,提出了一套完整的数据和AI治理框架。研究发现当前主流AI模型中37.65%的输出存在偏见,其中33.7%具有中高风险。通过开发BEATS检测系统和全生命周期治理方案,为AI系统建立了从数据收集到部署监控的完整"公平性保障体系",旨在让AI技术更好地服务全人类而非延续社会偏见。
两大企业基础设施厂商宣布产品线扩展,为客户提供更多大规模部署人工智能工作负载的选择。戴尔更新AI数据平台,新增非结构化数据引擎,并推出搭载英伟达RTX PRO 6000 Blackwell GPU的PowerEdge服务器。HPE扩展AI优化系统配置,支持自主AI和物理AI应用。两家公司均集成英伟达最新Blackwell架构GPU和AI软件套件,提供从数据处理到模型推理的完整解决方案。
浙江大学团队开发的HarmonyGuard框架首次解决了AI网络代理的安全与效率平衡难题。该系统通过三个协作的AI代理,实现自适应安全策略更新和双目标优化,在真实测试中将策略合规率提升38%,任务完成率提升20%,为构建既高效又安全的智能助手奠定重要基础。