ZDNet至顶网软件频道消息:某电力公司用户反映访问公司服务器非常慢,网络基本上处于瘫痪状态。用户通过网管软件对网络设备和服务器的性能进行监控,找出问题是交换机CPU利用率达99%,而服务器性能正常。对于交换机的CPU高负荷运转,通过各方面排查最终没有找到问题原因。这种故障问题持续已有2天,在部署科来回溯分析系统后,对内网核心交换机(全端口RX镜像)的流量进行了7×24小时监控,通过回溯分析系统提取出问题时段的通信数据,我们定位到导致网络瘫痪的主要原因。用户的网络环境示意如下:
由于本案例中核心交换出现异常,需要部署科来回溯分析系统对内网进行全面的监控和分析,因此采用的是核心交换全端口镜像的方式。
案例分析
由于时间原因无法到现场排查问题,对于核心交换机CPU利用率99%,开始我们认为是流量拥塞或者蠕虫疯狂扫描所导致。在故障时间里网管下载回溯设备中的数据包回传,数据流量478MB左右,峰值大约100Mbps,抓包时间不足2分钟。峰值流量(核心交换全端口)都在100Mbps一下,对于千兆网络来说这种规模的流量不足以造成交换机高使用率。如下图:
通过科来便携式软件将流量导入,在概要统计表的数据包分布中,发现网络中存在异常小包(小于255大于64),流量过多,每秒钟2万多个小包。在短时间内产生大量小包,有以下几种可能:ARP广播、DOS攻击、蠕虫扫描、UDP攻击等。因此在分析的时候一般要抓住以下几点,每秒数据包个数、发包数量、包的收发比。我们以IP端点为基准对每秒数据包个数进行排序,可以发现172.168.46.81地址在一秒钟内发出13882个数据包,在不到2分钟时间里发出294094个数据包,且包的发收比很大。为了进一步分析此地址异常行为,对它进行定位分析。
直接对异常此地址产生的UDP报文会话进行深入分析,如下图:
通过上图可以看出内网主机172.168.46.81向104.96.172.0和184.89.172.0(非法地址)及172.168.46.254疯狂发包,源端口为1102、目标端口6900。在不到2分钟时间里产生将近60万个UDP小包。在短时间里核心交换机对于收到目标是104.96.172.0、184.89.172.0需要进行三层转发,而收到目标是172.168.46.254且端口是6900(核心交换的地址)核心交换机会产生大量ICMP端口不可达信息。对此核心交换在短时间里处理主机172.168.46.81产生巨多数据报文,还要加上正常访问流量,最后不得不导致CPU利用率过高。
分析结论
1、用户正常通讯流量,不会对核心交换造成高使用率。
2、主机172.168.46.81感染恶意程序对交换机实施UDP泛洪攻击,是导致此次网络瘫痪的原因。
分析完后通过和网管沟通,将此主机网线断开,核心交换利用率很快正常,网络随之也平稳运行。对于此次网络故障超出我们的想象,一台普通主机在几十秒之内就可以将市级规模的网络攻击瘫痪。真可谓四两拨千斤!!!对于网络运维部门当前网络注重资源、设备的管理和监控,建议加强对网络中通讯流量的透视分析。
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。
这项研究由中国科学技术大学的研究团队提出了Pro3D-Editor,一种新型3D编辑框架,通过"渐进式视角"范式解决了现有3D编辑方法中的视角不一致问题。传统方法要么随机选择视角迭代编辑,要么同时编辑多个固定视角,都忽视了不同编辑任务对应不同的"编辑显著性视角"。Pro3D-Editor包含三个核心模块:主视角采样器自动选择最适合编辑的视角,关键视角渲染器通过创新的MoVE-LoRA技术将编辑信息传递到其他视角,全视角精修器修复并优化最终3D模型。实验证明该方法在编辑质量和准确性方面显著优于现有技术。
这项研究提出了ComposeAnything,一个无需重新训练的框架,可显著提升AI图像生成模型处理复杂空间关系的能力。该技术由INRIA、巴黎高师和CNRS的研究团队开发,通过三个创新步骤工作:首先利用大型语言模型创建包含深度信息的2.5D语义布局,然后生成粗略的场景合成图作为先验指导,最后通过物体先验强化和空间控制去噪引导扩散过程。在T2I-CompBench和NSR-1K基准测试中,该方法远超现有技术,特别是在处理复杂空间关系和多物体场景时表现卓越,为AI辅助创意设计开辟新可能。