ZDNet至顶网软件频道消息:就在上个月末,AWS推出了一套面向VMware vCenter的管理门户,旨在管理虚拟化数据中心。AWS还集成了单点登录机制并在其管理门户中结合了与vCenter相统一的外观与使用感受。AWS的vCenter管理门户现在已经在vSphere应用程序当中提供下载与安装。
随着这套方案的出台,AWS应该能够更轻松地构建起混合数据中心。最终,虚拟机向AWS EC2的迁移难度将大大降低,从而让更多企业加入到实施云实验方案的阵营中来。
AWS此举到底有多重要?从VMware方面的反应来看,Amazon的管理控制台明显触动了对方的神经。在一篇博文中,VMware公司CTO Chris Wolf表示AWS的vCenter控制台可能会让云架构方面的问题变得更加复杂。
Wolf在文章中写道:Amazon公布了面向vCenter的AWS管理门户。该工具能够帮助管理员将虚拟机导入Amazon环境并通过Vmware vCenter执行基本管理任务。
然而正如我之前所说,虚拟机是整个体系中处理难度最低的环节。考虑到管理工作的依赖性以及与第三方方案的集成效果,如果大家希望把这些工作负载迁移或者单纯运行在其它AWS尚未涉足的实例当中,例如外包环境、其它云服务供应商或者自有数据中心当中,各位可能会发现由迁移或者全新部署所带来的成本及复杂性将远远超乎想象。
该服务堆栈可能会被限定配合专有API,而且全部或者大部分第三方管理以及操作软件都必须被替换下来。有鉴于此,大家将面临沉重的全新疑难问题而且很可能需要重新采购相关产品。
Wolf随后还表示,客户应当对AWS门户的战略价值提出疑问,其中第三方集成、软件许可、工作负载可移植性以及调控手段都将成为考量的重点。
换句话来说,VMware认为AWS的门户方案有可能破坏现有解决思路。
曾经将自家CloudMapper应用程序迁移为云工作负载的ScienceLogic公司表示有话要说。该公司CTO Antonio Piraino指出,AWS此举可谓正中VMware用户的下怀,而各虚拟化厂商自然也感受到了由此带来的巨大威胁。Piraino认为,这套混合管理工具真正给企业用户提供了将工作负载迁移至AWS的理由。与Wolf一样,Piraino也强调了从VMware环境将工作负载迁移至AWS所面临的复杂挑战。不出意外,Piraino旋即将话题转移到了CloudMapper身上。
总结来讲,AWS有可能像挤占其它大型技术企业市场份额那样给VMware带来沉重打击。在计算与存储任务不断涌向云厂商环境中的过程中,硬件成为了阻碍这一趋势的绊脚石。VMware并不是一家硬件厂商,但该公司需要确保自己的软件切实运行在其它售出的设备之上。
瑞士信贷公司分析师Kulbinder Garcha指出:关键因素在于,Amazon工作负载可以在内部环境中创建而后迁移至外部环境,这就大大降低了企业用户对自有资源的需求量。很明显,这一特性平衡了内部与外部之间的互操作性,而且需要在实践过程中发挥效力;但它也让我们看到了AWS给传统IT支出与定价机制带来的破坏性影响。
AWS在持续创新、规模增长以及价格削减方面作出了大量努力,这与前景黯淡的IT支出形成了鲜明的对比。我们担心Amazon的产品会不断挤压传统IT供应商借以生存的市场空间,并在无声无悄之间夺取大量IT预算。
Garcha同时补充称,AWS虽然对IBM、思科、惠普以及NetApp来说威胁更大,但EMC、也就是VMware的母公司同样面临着巨大压力。
VMware公司vCloud混合服务副总裁兼首席技术专家Simone Brunozzi对Garcha的说法则并不买账。Brunozzi曾经供职于AWS,他在见识到公有云方案的局限性之后毅然将全部精力投入到了混合数据中心方案领域。他还指出,VMware拥有良好的发展前景、因为这家公司能够在简化依赖性以及实现公有与私有云间互操作性方面扮演重要角色。
现实情况是,VMware与AWS都拥有可观的未来发展空间。不过这两位也可能以云管理工具为导火索、在某些特定领域发生碰撞。
总结来讲:AWS对于VMware来说确实是一种威胁,而后者的最佳战术则是让混合数据中心具备胜过公有云的精简化优势。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。