ZDNet至顶网软件频道消息:微软高层宣布计划裁减18000名员工,此次裁员的大部分员工都是前诺基亚公司的员工,他们是在诺基亚公司的手机业务被微软并购的时候进入这家公司的。但是,也有很多其他的团队和业务组也受到了此次裁员行动的波及。
Terry Myerson领导的统一操作系统组(OSG)需要削减大量的测试人员,负责为Xbox制作原创电视内容的Xbox娱乐工作室团队也未能幸免。我听到传言说一些Windows营销人员也将被裁撤。
下面是Myerson在7月17日发给OSG团队的电子邮件,在邮件中,他宣布将调整团队的工作重点:
各位团队成员,
如同萨提亚在上周分享的那样,我们正在对我们设计产品的方式进行广泛地调整,这一举措我们也讨论了差不多快一年了。因此,今天我们进行重组,将我们的团队划分成三个部分:加强我们一些在地理上分散的团队,取消一些项目以便增加一些更重要的事情的投资,改变跨领域工作员工的比例,以此作为我们新的设计流程的一部分。对于那些工作受到影响的人,如果他们在雷蒙德,他们部门内部将会有一位领导在今天上午11:30(美国太平洋时区时间)之前伸出援手;雷蒙德之外的地区时间会有所不同。
这些改变的困难程度令人难以置信。一些人的工作会受到这些变化的冲击,他们是我们的同事,也是我们的朋友。公司正在通过多种方式为这些员工在过渡期提供支持、服务和援助。对于那些工作受到影响的同事们,我想在这里感谢你们对微软、对我们的客户的贡献,并且祝你们一切顺利。
对于我们所有的人来说,适应今天发布的内容都需要时间,但是我们现在可以继续前进了,我们知道我们已经在美国境内完成了全OSG范围内的重组;美国境外的部分将根据当地的法律和方法完成。
-Terry
我从自己的消息渠道听到的说法是,将要被取消的项目指的是Xbox娱乐工作室。可能还有其他一些项目也会被取消,但是我还没有任何关于还有哪些项目(到目前为止)将被取消掉的消息。
Myerson提到的在美国已经完成的组织调整主要是围绕着降低测试人员与开发人员的比例而开展的,因此导致大量测试人员被裁撤。这项“综合工程”计划意味着取消在微软已经存在了好多年的功能管理结构,这对于OSG来说是一个新举措,但是对于微软的其他部门来说已经算不上什么新鲜事了,例如应用和系统事业部以及云计算和企业事业部。
我听说,对于测试人员的调整说不上完全是突然袭击。几个月之前,微软调整了OSG测试部门的工作,将其重新命名为 “质量”,并且将这个部门的工作重点从编写测试调整为“测试质量”。这意味着编写测试的工作已经转移到了开发部门,这样质量团队中就有很多人没事干了——这就为削减测试人员扫清了道路。
我听说,OSG的其他部分也会削减数量未知的“个人贡献者”而不是产品经理。有一些人说,OSG建设部门中可能也会裁掉一些员工,这主要是由于Xbox操作系统、Windows Phone操作系统和Windows操作系统建设部门合并后造成了一定的人员冗余。
在首席执行官萨提亚·纳德拉的领导下——他非常关注“数据和应用科学”——一个新的内部开发和测试工具即将出现。同时,还有很多微软的员工从去年起就开始充实各自的部门中数据科学团队。(我听说Dean Hachamovitch已经不再是这家公司的首席数据科学家了,不过似乎还没有完全确定;我也不知道现在的首席数据科学家是谁。)
当然,这些新的流程和工具对微软的Windows、Windows Phone和Xbox的开发及推出时间表会产生什么样的影响仍然需要等待。
好文章,需要你的鼓励
IDC数据显示,Arm架构服务器出货量预计2025年将增长70%,但仅占全球总出货量的21.1%,远低于Arm公司年底达到50%市场份额的目标。大规模机架配置系统如英伟达DGX GB200 NVL72等AI处理设备推动了Arm服务器需求。2025年第一季度全球服务器市场达到创纪录的952亿美元,同比增长134.1%。IDC将全年预测上调至3660亿美元,增长44.6%。配备GPU的AI服务器预计增长46.7%,占市场价值近半。
华为诺亚实验室联合多家顶尖院校推出开源机器人编程框架Ark,通过Python优先设计和模块化架构,实现仿真与现实环境的无缝切换。该框架大幅降低机器人编程门槛,支持现代AI技术集成,为机器人学习研究提供统一平台,有望加速机器人技术普及。
AI正在重塑创业公司的构建方式,这是自云计算出现以来最重大的变革。January Ventures联合创始人Jennifer Neundorfer将在TechCrunch All Stage活动中分享AI时代的新规则,涵盖从创意验证、产品开发到团队架构和市场策略的各个方面。作为专注于B2B早期投资的风投合伙人,她将为各阶段创业者提供关键洞察。
网易有道研究团队开发了Confucius3-Math,这是一个专门针对中国K-12数学教育的14B参数AI模型。该模型在多项数学推理测试中表现出色,超越了许多规模更大的竞争对手,训练成本仅需2.6万美元,推理速度比DeepSeek-R1快15倍,能在消费级GPU上高效运行,旨在通过降低AI教育成本来促进教育公平。