ZDNet至顶网软件频道消息:某大学校园网内部的数据中心最近一段时间通过流量监控设备发现流量比以前高很多,校内及校外均有人反映访问数据中心服务器的速度比较慢。根据用户介绍前段时间在数据中心与校园网核心交换机之间部署了一台流量分流设备,用于IDS及其他安全设备采集网络数据。用户怀疑是该设备问题导致的异常,但并没有有力的证据。
根据故障现象我们在用户网络中部署了科来回溯分析系统,分别镜像流量异常的两端(校园网核心交换、数据中心汇聚交换机)的流量进行数据包级分析。
校园网核心交换采集数据分析
在校园网核心交换处通过科来回溯分析系统采集的数据包,我们通过TCP会话视图可以看到从数据中心发过来的数据包的TCP序列号两两重复,而且间隔时间非常短,从核心交换发往数据中心的数据包则没有出现这种情况。这一现象可以排除TCP重传的可能性,因为超时重传需要等待两倍RTT延时,发送方不可能如此短的时间间隔重传数据包。
通过数据包IP Identification字段的比对,我们可以看到数据中心发到核心交换的数据包的IP Identification字段的值会重复两次,如下图所示。
IP Identification字段是鉴别IP报文是否重复的重要指标,发送方短时间不会构造两个IP Identification字段相同的报文,因此我们可以断定这些报文是在到达校园网核心交换这段链路上被中间设备额外复制了一份。
初步怀疑有以下几种可能:
由于数据中心原本流量就比较高,数据包被重复发送导致了链路流量过高出现了拥塞。要准确定位原因需要在数据中心汇聚交换机采集出口链路的流量才能够进一步判断问题点。
数据中心出口采集数据分析
在数据中心出口采集到的数据包,其现象与核心交换处的现象正好相反:从核心发过来的数据包会重复两次,发往核心的数据包没有重复。
由于在数据中心并未看到数据中心发出的报文有重复现象,而在核心交换也未看到核心发往数据中心的报文重复,我们可以排除数据中心内部网络设备和核心交换机镜像异常的可能性。
通过数据比对,我们可以看到单一的数据包在经过流量分流设备到达另外一端后就会出现重复一次的现象,可以判断很可能是流量分流设备导致的问题。
用户将这一信息告知流量分流设备厂商后,厂商技术人员经过仔细核查确认配置存在错误,进行了调整后网络回复正常。
好文章,需要你的鼓励
本文探讨了AI驱动的网络攻击如何在短短51秒内突破网络防线,并介绍了CISO们应对这些超高速攻击的策略。重点包括零信任架构、身份验证强化、AI驱动的实时威胁检测等。文章强调了迅速撤销会话令牌、统一端点和云安全、以及从恶意软件检测转向凭证滥用预防的重要性。
Lovelace Studio 正在开发名为 Nyric 的 AI 工具,帮助玩家在生存制作类沙盒游戏中打造自己的游戏世界。玩家可以使用 AI 工具创建独特风格的世界,并与其他玩家互动。该工具旨在赋予独立创作者和社交玩家更多能力,让他们能够轻松构建和连接自己的虚拟世界。
随着AI代码生成工具的广泛应用,企业面临着新的挑战。AI生成的代码可能存在安全漏洞、架构问题和合规风险。为此,企业需要实施严格的验证流程,认识AI在复杂代码库中的局限性,理解AI代码的特有问题,要求开发人员对代码负责,并建立高效的AI工具审批机制。同时,专门的代码分析工具也变得不可或缺。
AI 语音克隆技术的滥用正日益成为企业面临的重大安全威胁。近期多起高调事件显示,不法分子利用 AI 生成的虚假音频视频进行诈骗。目前许多语音克隆应用缺乏有效防护措施,企业领导人的公开音频很容易被用于克隆。专家呼吁采取多因素认证等措施加强防范,并预计未来将出台更多监管措施和检测技术来应对这一威胁。