ZDNet至顶网软件频道消息:从2003年正式成立,至今科来软件已经经历了十多个春秋。过去十年,国内信息化迎来爆炸式增长,网络运维领域也随之产生了变化,在给市场注入新活力的同时,也使网络运维难度不断升级。
随着网络规模越来越大、网络中承载的业务类型越来越多样化,当用户业务体验受损时,IT运维人员往往难以判断是业务系统的问题,还是网络引起的问题,更不用说定位具体什么问题导致用户体验变差,运维人员很多时候都在忙着“救火”。如何掌握业务质量情况,如何实现网络故障快速精准定位,这些已经成为网络运维领域急需解决的问题。
影响业务系统性能的因素有哪些?
首先,缺乏对业务实际运行性能的有效监控。现有的性能监控手段主要针对的主要是应用、主机、网络设备自身的运行状态监控,这些并不能直接反应业务的实际运行性能和状态。现有的性能监控系统缺乏针对应用正在发生的实际交易的响应情况、主机的连接响应和数据传输状态、应用数据的实际网络传输性能等影响业务实际运行的性能参数进行有效的监控,很多业务性能下降和业务故障无法进行有效及时的发现。
其次,缺乏对业务整体支撑架构的了解。用户支撑业务系统的网络和应用系统的规模越来越大,越来越复杂,用户多采用多头管理,一旦出现问题,如何快速隔离故障点就变成了一个非常棘手的问题,现在一般的做法是所有相关的运行维护人员各自对自己负责的系统进行逐一排查,效率低下。
再次,缺乏以业务为核心的监控视图。用户的监控系统提供的监控视图多基于网元、主机和应用分别呈现,无法体现各种事件对关键业务系统的影响,具体来讲就是说一个事件影响了哪些业务的运行性能,影响程度如何。
最后,缺乏面向业务的主动分析能力。
科来UPM护航企业运维系统
基于以上的分析,科来业务性能管理系统意在帮助用户建立一个有效的以业务为核心的网络性能智能监控分析体系,使IT运行维护工作和业务活动紧密的结合起来,简化网络监控和分析过程,从而大大提升业务网络的运行维护能力和故障处置效率,有效减少业务故障时间。
科来UPM业务性能管理解决方案由“前端回溯分析服务器(简称‘前端’)”和“UPM分析中心(简称‘UPM中心’)”两部分组成。前端设备可分布式部署在业务系统通讯传输的各个重要汇聚节点,通过交换机端口镜像或流量分流设备采集业务通信数据;实时采集分析的性能指标参数和应用报警信息通过管理接口上报到UPM中心进行汇总分析。UPM中心部署在数据中心用于集中管理配置前端设备,集中收集前端设备采集的业务性能指标及报警信息进行汇总展现。
产品部署图
科来UPM围绕客户的业务网络,提供以业务为核心的网络支撑环境梳理、实时性能监控和快速故障定位分析功能。
科来UPM是基于网络智能分析的解决方案,以业务网络通讯智能分析为基础,独立采集分析数据,不依赖和影响其它系统。能够提供支撑业务系统的网络传输、主机服务、应用响应和交易处理的全面性能分析参数,能真正的提供业务网络集成监控分析能力。
好文章,需要你的鼓励
字节跳动智能创作实验室发布革命性AI视频数据集Phantom-Data,解决视频生成中的"复制粘贴"问题。该数据集包含100万个跨场景身份一致配对,通过三阶段构建流程实现主体检测、多元化检索和身份验证,显著提升文本遵循能力和视频质量。
这是一项关于计算机视觉技术突破的研究,由多家知名院校联合完成。研究团队开发了LINO-UniPS系统,能让计算机像人眼一样从不同光照下的照片中准确识别物体真实的表面细节,解决了传统方法只能在特定光照条件下工作的局限性,为虚拟现实、文物保护、工业检测等领域带来重要应用前景。
被盗凭证导致80%的企业数据泄露。随着AI智能体投入生产,管理10万员工的企业将需要处理超过100万个身份。传统身份访问管理架构无法应对智能体AI的大规模部署。领先厂商正采用蓝牙低功耗技术替代硬件令牌,实现基于距离的身份验证。行为分析可实时捕获被入侵的智能体,零信任架构扩展至智能体部署。这代表了自云计算普及以来最重要的安全变革。
这篇文章介绍了北京人工智能研究院开发的OmniGen2模型,一个能够同时处理文字转图像、图像编辑和情境生成的全能AI系统。该模型采用双轨制架构,分别处理文本和图像任务,并具备独特的自我反思机制,能够自动检查和改进生成结果。研究团队还开发了专门的数据构建流程和OmniContext评测基准,展现了开源模型的强大潜力。