ZDNet至顶网软件频道消息:从2003年正式成立,至今科来软件已经经历了十多个春秋。过去十年,国内信息化迎来爆炸式增长,网络运维领域也随之产生了变化,在给市场注入新活力的同时,也使网络运维难度不断升级。
随着网络规模越来越大、网络中承载的业务类型越来越多样化,当用户业务体验受损时,IT运维人员往往难以判断是业务系统的问题,还是网络引起的问题,更不用说定位具体什么问题导致用户体验变差,运维人员很多时候都在忙着“救火”。如何掌握业务质量情况,如何实现网络故障快速精准定位,这些已经成为网络运维领域急需解决的问题。
影响业务系统性能的因素有哪些?
首先,缺乏对业务实际运行性能的有效监控。现有的性能监控手段主要针对的主要是应用、主机、网络设备自身的运行状态监控,这些并不能直接反应业务的实际运行性能和状态。现有的性能监控系统缺乏针对应用正在发生的实际交易的响应情况、主机的连接响应和数据传输状态、应用数据的实际网络传输性能等影响业务实际运行的性能参数进行有效的监控,很多业务性能下降和业务故障无法进行有效及时的发现。
其次,缺乏对业务整体支撑架构的了解。用户支撑业务系统的网络和应用系统的规模越来越大,越来越复杂,用户多采用多头管理,一旦出现问题,如何快速隔离故障点就变成了一个非常棘手的问题,现在一般的做法是所有相关的运行维护人员各自对自己负责的系统进行逐一排查,效率低下。
再次,缺乏以业务为核心的监控视图。用户的监控系统提供的监控视图多基于网元、主机和应用分别呈现,无法体现各种事件对关键业务系统的影响,具体来讲就是说一个事件影响了哪些业务的运行性能,影响程度如何。
最后,缺乏面向业务的主动分析能力。
科来UPM护航企业运维系统
基于以上的分析,科来业务性能管理系统意在帮助用户建立一个有效的以业务为核心的网络性能智能监控分析体系,使IT运行维护工作和业务活动紧密的结合起来,简化网络监控和分析过程,从而大大提升业务网络的运行维护能力和故障处置效率,有效减少业务故障时间。
科来UPM业务性能管理解决方案由“前端回溯分析服务器(简称‘前端’)”和“UPM分析中心(简称‘UPM中心’)”两部分组成。前端设备可分布式部署在业务系统通讯传输的各个重要汇聚节点,通过交换机端口镜像或流量分流设备采集业务通信数据;实时采集分析的性能指标参数和应用报警信息通过管理接口上报到UPM中心进行汇总分析。UPM中心部署在数据中心用于集中管理配置前端设备,集中收集前端设备采集的业务性能指标及报警信息进行汇总展现。
产品部署图
科来UPM围绕客户的业务网络,提供以业务为核心的网络支撑环境梳理、实时性能监控和快速故障定位分析功能。
科来UPM是基于网络智能分析的解决方案,以业务网络通讯智能分析为基础,独立采集分析数据,不依赖和影响其它系统。能够提供支撑业务系统的网络传输、主机服务、应用响应和交易处理的全面性能分析参数,能真正的提供业务网络集成监控分析能力。
好文章,需要你的鼓励
OpenAI在最新博客中首次承认,其AI安全防护在长时间对话中可能失效。该公司指出,相比短对话,长对话中的安全训练机制可能会退化,用户更容易通过改变措辞或分散话题来绕过检测。这一问题不仅影响OpenAI,也是所有大语言模型面临的技术挑战。目前OpenAI正在研究加强长对话中的安全防护措施。
北航团队推出VoxHammer技术,实现3D模型的精确局部编辑,如同3D版Photoshop。该方法直接在3D空间操作,通过逆向追踪和特征替换确保编辑精度,在保持未修改区域完全一致的同时实现高质量局部修改。研究还创建了Edit3D-Bench评估数据集,为3D编辑领域建立新标准,展现出在游戏开发、影视制作等领域的巨大应用潜力。
谷歌宣布计划到2026年底在弗吉尼亚州投资90亿美元,重点发展云计算和AI基础设施。投资包括在里士满南部切斯特菲尔德县建设新数据中心,扩建现有设施,并为当地居民提供教育和职业发展项目。弗吉尼亚州长表示这项投资是对该州AI经济领导地位的有力认可。此次投资是谷歌北美扩张战略的一部分。
宾夕法尼亚大学研究团队开发出PIXIE系统,这是首个能够仅通过视觉就快速准确预测三维物体完整物理属性的AI系统。该技术将传统需要数小时的物理参数预测缩短至2秒,准确率提升高达4.39倍,并能零样本泛化到真实场景。研究团队还构建了包含1624个标注物体的PIXIEVERSE数据集,为相关技术发展奠定了重要基础,在游戏开发、机器人控制等领域具有广阔应用前景。