ZDNet至顶网软件频道消息:现在,云基础设施市场的竞争非常激烈,每个厂商都在尽可能的使自己与众不同。建设基础设施需要大量资金,选择正确的位置来配置资产就更加重要。云供应商可以对产品或技术水平创新,但位置同样重要,那么原因究竟是什么?
为什么位置很重要?
多样化的位置很重要有以下原因:
世界范围内部署数据中心并不便宜,这就是大型云供应商的优势所在。它不只是为数据中心配置装备和人员,更重要的创新来自那些设施的效率。这是否意味着使用当地的地理环境或者建立自己的电力系统可以让数据中心更环保?这些只有在真正达到规模时,才有助于降低价格。
现下情况
不同的供应商都有区域的概念,或数据中心在一个特定的区域。通常,他们被分割成多个地区,所以可以在地区内实现冗余,但对真正的冗余并不够,由于整个地区可能会故障,或有可能遭遇风暴似的地区事件。因此,真正的地域分开非常重要:
Data Center Locations by Geography
|
Provider |
USA |
Europe |
Asia |
Other |
|
Amazon Web Services |
3 |
1 |
3 |
1 |
|
Microsoft Azure |
5 |
2 |
4 |
1 |
|
|
1 |
1 |
1 |
0 |
|
Rackspace |
3 |
1 |
2 |
0 |
|
Softlayer |
5 |
2 |
2 |
0 |
Azure以12个区域领先,接着是Softlayer的9个,Amazon 8个,Rackspace 6个。Google比较落后,只有3个。
巨头选址
长时间以来,亚马逊在欧洲只有一个数据中心(虽然随着德国新中心的建立而改变),这很奇怪。如果想保持冗余性,就需要2个数据中心挨着,否则延迟会是一个问题。例如,在两个数据中心间复制生产数据库将延迟更久,如果要跨海洋发送数据(例如从美国到爱尔兰)。在爱尔兰和德国之间复制会更好!
2014年以来,随着声称在新数据中心耗资12亿美金,Softlayer也正在推广到其它地区。最近,它推出了香港和伦敦的数据中心,接下来还有更多计划,美国北部2个、欧洲2个、巴西、阿联酋、印度、中国、日本和澳大利亚2个。
最令人失望的是Google,它在基础设施支出一大笔钱,其实有很多全球的数据中心,还不是Google云的一部分。当然,Google是新加入云市场的,大部分的需求来自搜索和Gmail等产品,消费者的需求将占主导地位。考虑到Google推出新功能的速度,如果它真的想和别人竞争,将很快取得进展。
关于中国
我专门从上述数据排除了中国,但它仍然是一个有趣的案例。问题是,即使国内的连接非常好(某些区域),越境会显著增加延迟和丢包,微软和亚马逊都在中国拥有数据中心,但是需要一个单独的账号,通常必须在中国申请。Softlayer宣布在上海成立了一个数据中心,值得关注的是,它是否可以连接到全球专有网络并具有很好的吞吐量?对Google来说,它4年前公开离开中国,因此它不可能在这儿推出一个数据中心。
很明显,位置将是一个竞争优势,目前微软占据第一,但是很快会输给Softlayer。考虑到投资的金额,云的可用性下一步会扩展到哪儿将值得关注。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。