ZDNet至顶网软件频道消息:现在,云基础设施市场的竞争非常激烈,每个厂商都在尽可能的使自己与众不同。建设基础设施需要大量资金,选择正确的位置来配置资产就更加重要。云供应商可以对产品或技术水平创新,但位置同样重要,那么原因究竟是什么?
为什么位置很重要?
多样化的位置很重要有以下原因:
世界范围内部署数据中心并不便宜,这就是大型云供应商的优势所在。它不只是为数据中心配置装备和人员,更重要的创新来自那些设施的效率。这是否意味着使用当地的地理环境或者建立自己的电力系统可以让数据中心更环保?这些只有在真正达到规模时,才有助于降低价格。
现下情况
不同的供应商都有区域的概念,或数据中心在一个特定的区域。通常,他们被分割成多个地区,所以可以在地区内实现冗余,但对真正的冗余并不够,由于整个地区可能会故障,或有可能遭遇风暴似的地区事件。因此,真正的地域分开非常重要:
Data Center Locations by Geography
Provider |
USA |
Europe |
Asia |
Other |
Amazon Web Services |
3 |
1 |
3 |
1 |
Microsoft Azure |
5 |
2 |
4 |
1 |
|
1 |
1 |
1 |
0 |
Rackspace |
3 |
1 |
2 |
0 |
Softlayer |
5 |
2 |
2 |
0 |
Azure以12个区域领先,接着是Softlayer的9个,Amazon 8个,Rackspace 6个。Google比较落后,只有3个。
巨头选址
长时间以来,亚马逊在欧洲只有一个数据中心(虽然随着德国新中心的建立而改变),这很奇怪。如果想保持冗余性,就需要2个数据中心挨着,否则延迟会是一个问题。例如,在两个数据中心间复制生产数据库将延迟更久,如果要跨海洋发送数据(例如从美国到爱尔兰)。在爱尔兰和德国之间复制会更好!
2014年以来,随着声称在新数据中心耗资12亿美金,Softlayer也正在推广到其它地区。最近,它推出了香港和伦敦的数据中心,接下来还有更多计划,美国北部2个、欧洲2个、巴西、阿联酋、印度、中国、日本和澳大利亚2个。
最令人失望的是Google,它在基础设施支出一大笔钱,其实有很多全球的数据中心,还不是Google云的一部分。当然,Google是新加入云市场的,大部分的需求来自搜索和Gmail等产品,消费者的需求将占主导地位。考虑到Google推出新功能的速度,如果它真的想和别人竞争,将很快取得进展。
关于中国
我专门从上述数据排除了中国,但它仍然是一个有趣的案例。问题是,即使国内的连接非常好(某些区域),越境会显著增加延迟和丢包,微软和亚马逊都在中国拥有数据中心,但是需要一个单独的账号,通常必须在中国申请。Softlayer宣布在上海成立了一个数据中心,值得关注的是,它是否可以连接到全球专有网络并具有很好的吞吐量?对Google来说,它4年前公开离开中国,因此它不可能在这儿推出一个数据中心。
很明显,位置将是一个竞争优势,目前微软占据第一,但是很快会输给Softlayer。考虑到投资的金额,云的可用性下一步会扩展到哪儿将值得关注。
好文章,需要你的鼓励
在迪拜Gitex 2025大会上,阿联酋成为全球AI领导者的雄心备受关注。微软正帮助该地区组织从AI实验阶段转向实际应用,通过三重方法提供AI助手、协同AI代理和AI战略顾问。微软已在阿联酋大举投资数据中心,去年培训了10万名政府员工,计划到2027年培训100万学习者。阿联酋任命了全球首位AI部长,各部门都配备了首席AI官。微软与政府机构和企业合作,在公民服务和金融流程等领域实现AI的实际应用,构建全面的AI生态系统。
查尔斯大学和意大利布鲁诺·凯斯勒基金会的研究团队首次系统性解决了同声传译AI系统延迟评估的准确性问题。他们发现现有评估方法存在严重偏差,常给出相互矛盾的结果,并提出了YAAL新指标和SOFTSEGMENTER对齐工具。YAAL准确性达96%,比传统方法提升20多个百分点。研究还开发了专门的长音频评估工具LongYAAL,为AI翻译技术发展提供了可靠的测量标准。
苹果与俄亥俄州立大学研究人员发布名为FS-DFM的新模型,采用少步离散流匹配技术,仅需8轮快速优化即可生成完整长文本,效果媲美需要上千步骤的扩散模型。该模型通过三步训练法:处理不同优化预算、使用教师模型指导、调整迭代机制来实现突破。测试显示,参数量仅1.7亿至17亿的FS-DFM变体在困惑度和熵值指标上均优于70-80亿参数的大型扩散模型。
印度理工学院团队构建了史上最大规模印度文化AI测试基准DRISHTIKON,包含64288道多语言多模态题目,覆盖15种语言和36个地区。研究评估了13个主流AI模型的文化理解能力,发现即使最先进的AI也存在显著文化盲区,特别是在低资源语言和复杂推理任务上表现不佳,为构建文化感知AI提供了重要指导。