ZDNet至顶网软件频道消息:现在,云基础设施市场的竞争非常激烈,每个厂商都在尽可能的使自己与众不同。建设基础设施需要大量资金,选择正确的位置来配置资产就更加重要。云供应商可以对产品或技术水平创新,但位置同样重要,那么原因究竟是什么?
为什么位置很重要?
多样化的位置很重要有以下原因:
世界范围内部署数据中心并不便宜,这就是大型云供应商的优势所在。它不只是为数据中心配置装备和人员,更重要的创新来自那些设施的效率。这是否意味着使用当地的地理环境或者建立自己的电力系统可以让数据中心更环保?这些只有在真正达到规模时,才有助于降低价格。
现下情况
不同的供应商都有区域的概念,或数据中心在一个特定的区域。通常,他们被分割成多个地区,所以可以在地区内实现冗余,但对真正的冗余并不够,由于整个地区可能会故障,或有可能遭遇风暴似的地区事件。因此,真正的地域分开非常重要:
Data Center Locations by Geography
Provider |
USA |
Europe |
Asia |
Other |
Amazon Web Services |
3 |
1 |
3 |
1 |
Microsoft Azure |
5 |
2 |
4 |
1 |
|
1 |
1 |
1 |
0 |
Rackspace |
3 |
1 |
2 |
0 |
Softlayer |
5 |
2 |
2 |
0 |
Azure以12个区域领先,接着是Softlayer的9个,Amazon 8个,Rackspace 6个。Google比较落后,只有3个。
巨头选址
长时间以来,亚马逊在欧洲只有一个数据中心(虽然随着德国新中心的建立而改变),这很奇怪。如果想保持冗余性,就需要2个数据中心挨着,否则延迟会是一个问题。例如,在两个数据中心间复制生产数据库将延迟更久,如果要跨海洋发送数据(例如从美国到爱尔兰)。在爱尔兰和德国之间复制会更好!
2014年以来,随着声称在新数据中心耗资12亿美金,Softlayer也正在推广到其它地区。最近,它推出了香港和伦敦的数据中心,接下来还有更多计划,美国北部2个、欧洲2个、巴西、阿联酋、印度、中国、日本和澳大利亚2个。
最令人失望的是Google,它在基础设施支出一大笔钱,其实有很多全球的数据中心,还不是Google云的一部分。当然,Google是新加入云市场的,大部分的需求来自搜索和Gmail等产品,消费者的需求将占主导地位。考虑到Google推出新功能的速度,如果它真的想和别人竞争,将很快取得进展。
关于中国
我专门从上述数据排除了中国,但它仍然是一个有趣的案例。问题是,即使国内的连接非常好(某些区域),越境会显著增加延迟和丢包,微软和亚马逊都在中国拥有数据中心,但是需要一个单独的账号,通常必须在中国申请。Softlayer宣布在上海成立了一个数据中心,值得关注的是,它是否可以连接到全球专有网络并具有很好的吞吐量?对Google来说,它4年前公开离开中国,因此它不可能在这儿推出一个数据中心。
很明显,位置将是一个竞争优势,目前微软占据第一,但是很快会输给Softlayer。考虑到投资的金额,云的可用性下一步会扩展到哪儿将值得关注。
好文章,需要你的鼓励
Hugging Face推出开源工具Yourbench,允许企业创建自定义基准来评估AI模型在其内部数据上的表现。这一工具通过复制大规模多任务语言理解基准的子集,以极低成本实现了对模型性能的精确评估。Yourbench的出现为企业提供了更贴合实际需求的AI模型评估方法,有望改善模型评估的方式。
Cognition AI 推出 Devin 2.0,这是其 AI 驱动的软件开发平台的更新版本。新版本引入了多项功能,旨在提升开发者与自主代理之间的协作效率。最引人注目的是,Devin 2.0 的起价从每月 500 美元大幅下调至 20 美元,使其更易于普及。新功能包括并行 Devin、交互式规划、代码库搜索等,有望提升开发效率并增强用户控制。
安迪·卡拉布蒂斯是一位杰出的CIO,她的职业生涯横跨多个行业和地区,经历了多次变革时刻。她在福特和通用汽车锻炼了领导力和技术专长,后来在戴尔、拜奥根和国家电网等公司担任高管,推动战略创新。本文总结了她对IT领导者核心技能的见解,包括战略沟通、情商、协作、远见卓识、变革管理和敏捷性等,对当今IT领导者具有重要参考价值。
边缘 AI 计算将使人形机器人、智能设备和自动驾驶等应用从数据中心和云端服务器解放出来,转移到制造车间、手术室和城市中心等场景。它能实现低延迟和自主决策,使 AI 无处不在,推动工业设施全面自动化,彻底改变商业和生活方式。边缘 AI 正在快速发展,各大科技公司纷纷推出相关硬件和软件平台,未来将为各行各业带来巨大变革。