
ZDNet至顶网软件频道消息: Google 的产品列表广告(Product Listing Ads,PLA)是一项可供商家通过搜索页面销售各种产品的竞价广告,出现在 PLA 上的每一项产品都会提供其实时价格、库存信息及图片。不过最近,Google 正在为提高搜索结果的有效性和转换率做出进一步努力,在其博客上,Google 宣布将会为自己的 PLA 增加评价信息(仅美国)。
增加评价信息后被搜索到的产品会以比较表格的形式展示,每个产品下方将会有最高至 5 星的评级信息,同时还会有该产品的被点评数。通过这些信息,用户可以直观地了解产品之间的横向对比。
那么这些评级和点评数是怎么来的呢?根据博客的介绍,这些数据是多个来源的统计,包括商家、第三方聚合器、编辑网站及用户等。
显然 Google 认为提供评级信息有助于提升广告的点击率和转换率,从而帮助其广告业务的扩大。博客称产品评价为购买者提供了购物决策的关键信息。
但是究竟有多少收集了用户评级的商家会愿意把这些数据分享给 Google 尚不得而知,因为分享的数据太多有可能令商家失去主动,这种情况已经在 Amazon 身上体现,商家愈发变成纯粹的接单员。现在 Google 也开始向 Amazon 靠近,很难保证商家不会产生一样的恐惧。不过,对于那些不愿分享更多信息的 PLA 客户,Google 仍将把他们的产品信息列入到搜索结果中去。但是商家也会因提供信息不足而冒上损失大量潜在买家的风险。
Google 产品搜索结果呈现的数据越多,在形式上就越接近于 Amazon 的搜素。但是在送货速度和购买的快捷程度上 Google 仍无法与 Amazon 匹敌,尽管前者也有自己的快递服务 Google Shopping Express 及支付手段 Google Wallet。
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。