
ZDNet至顶网软件频道消息: Google 的产品列表广告(Product Listing Ads,PLA)是一项可供商家通过搜索页面销售各种产品的竞价广告,出现在 PLA 上的每一项产品都会提供其实时价格、库存信息及图片。不过最近,Google 正在为提高搜索结果的有效性和转换率做出进一步努力,在其博客上,Google 宣布将会为自己的 PLA 增加评价信息(仅美国)。
增加评价信息后被搜索到的产品会以比较表格的形式展示,每个产品下方将会有最高至 5 星的评级信息,同时还会有该产品的被点评数。通过这些信息,用户可以直观地了解产品之间的横向对比。
那么这些评级和点评数是怎么来的呢?根据博客的介绍,这些数据是多个来源的统计,包括商家、第三方聚合器、编辑网站及用户等。
显然 Google 认为提供评级信息有助于提升广告的点击率和转换率,从而帮助其广告业务的扩大。博客称产品评价为购买者提供了购物决策的关键信息。
但是究竟有多少收集了用户评级的商家会愿意把这些数据分享给 Google 尚不得而知,因为分享的数据太多有可能令商家失去主动,这种情况已经在 Amazon 身上体现,商家愈发变成纯粹的接单员。现在 Google 也开始向 Amazon 靠近,很难保证商家不会产生一样的恐惧。不过,对于那些不愿分享更多信息的 PLA 客户,Google 仍将把他们的产品信息列入到搜索结果中去。但是商家也会因提供信息不足而冒上损失大量潜在买家的风险。
Google 产品搜索结果呈现的数据越多,在形式上就越接近于 Amazon 的搜素。但是在送货速度和购买的快捷程度上 Google 仍无法与 Amazon 匹敌,尽管前者也有自己的快递服务 Google Shopping Express 及支付手段 Google Wallet。
好文章,需要你的鼓励
OpenAI在最新博客中首次承认,其AI安全防护在长时间对话中可能失效。该公司指出,相比短对话,长对话中的安全训练机制可能会退化,用户更容易通过改变措辞或分散话题来绕过检测。这一问题不仅影响OpenAI,也是所有大语言模型面临的技术挑战。目前OpenAI正在研究加强长对话中的安全防护措施。
北航团队推出VoxHammer技术,实现3D模型的精确局部编辑,如同3D版Photoshop。该方法直接在3D空间操作,通过逆向追踪和特征替换确保编辑精度,在保持未修改区域完全一致的同时实现高质量局部修改。研究还创建了Edit3D-Bench评估数据集,为3D编辑领域建立新标准,展现出在游戏开发、影视制作等领域的巨大应用潜力。
谷歌宣布计划到2026年底在弗吉尼亚州投资90亿美元,重点发展云计算和AI基础设施。投资包括在里士满南部切斯特菲尔德县建设新数据中心,扩建现有设施,并为当地居民提供教育和职业发展项目。弗吉尼亚州长表示这项投资是对该州AI经济领导地位的有力认可。此次投资是谷歌北美扩张战略的一部分。
宾夕法尼亚大学研究团队开发出PIXIE系统,这是首个能够仅通过视觉就快速准确预测三维物体完整物理属性的AI系统。该技术将传统需要数小时的物理参数预测缩短至2秒,准确率提升高达4.39倍,并能零样本泛化到真实场景。研究团队还构建了包含1624个标注物体的PIXIEVERSE数据集,为相关技术发展奠定了重要基础,在游戏开发、机器人控制等领域具有广阔应用前景。