ZDNet至顶网软件频道消息:集装箱拖车的轮子太多也太大了,因此对于货运公司来说,监测这些重型卡车轮胎的磨损情况,并且为其维护和更换轮胎,是一项相当艰巨的工作。
文章作者:微软公司离散制造部门全球董事总经理Sanjay Ravi
如果货运公司能把所有这些麻烦转移给轮胎制造商,情况会怎么样呢?轮胎上可以配置很多小型传感器,自动对轮胎进行监测,并将情况实时回传给制造商。而轮胎制造商在了解了每个轮胎的情况后,就可以定期安排轮胎的更换和维护了。
如此一来,对货运公司而言,运输里程增加了,安全性改善了,责任降低了,对数千个轮胎进行维护的流程得到了简化,甚至被彻底取消。在另一边,轮胎制造商接手了这些工作,也接手了安全风险,但也将从中获得回报——现在,制造商不只是在销售轮胎,更是在销售行驶里程。
这只是关于数据如何转变制造业的一个实例。如今,技术市场上还有很多人在四处炒作大数据和物联网的概念;但事实上,越来越强大的传感器和各类设备通过与后台系统、分析软件和云的连接,已经为各行各业带来了深刻的变革。随着这些联网运行方式的普及,制造业不仅得到了实现自动化和创造效率的全新手段,其管理层更注意到了利润增长前景光明的全新增长点——服务。
这一趋势不可逆转。根据微软委托IDC进行的一项最新研究,制造业在未来四年内从数据中获得的价值将高达3710亿美元。通过更好地利用数据,他们不仅可以提高生产效率、精简流程,还可以更好地管理客户关系,改善产品和服务。美国总统奥巴马最近宣布联邦政府将拨款1.4亿美元支持两家新设机构,正是因为它们能帮助企业收获不断增长的“数据红利”。而在长期以来一直被视为欧洲制造中心的德国,他们将这种新潮流称为工业4.0 ——其意义完全不亚于第四次工业革命。
对美国、德国,以及世界上其它所有国家而言,这一变革的第一阶段,首先是要从不断增长的海量数据中发掘效率,将生产车间与后台的IT技术连接起来,构成一个完整的“智能系统”。这种方式能够帮助制造商从生产流程中压缩成本,从而减轻发达经济体的压力,令其能够以更低的生产成本去更好地参与全球市场竞争。
每个人都希望生产线更精简、更高效,其实从许多方面来看,利用数据洞察来提升生产效率是最触手可及的办法。下一波机会就在于运用这些洞察,在供应链和需求链中构建效率,获取价值。诚然,要共享敏感业务数据是个挑战,但对大多数公司和企业来说,其回报将大于风险。
这一趋势已经改变了制造商看待自己及客户关系的方式。汽车的演进就是一个生动的例子。汽车的技术含量已经成为影响顾客购买决策的重要因素,并促使汽车厂商重新思考其与客户之间的关系。过去,这种关系基本上在交钱开票之后就结束了;而今天,汽车制造商已经变身成为科学技术的供应商。管理客户的售后体验、在汽车保有周期内为客户提供丰富、持续的在线服务,已变得与传统的生产销售工作同等、甚至更加重要。
在恰当的时间捕获恰当的数据,然后传送给企业内部恰当的人——这种通常被称为“数据民主”的处理方式,将是改变游戏规则的关键。一旦制造商透过各种设备、流程、人员和外部网络将分散的数据连接起来,数据就能进化成洞察。从此,制造商可以主动向客户发送备件和更新,安排维修事宜,预测存货需求和费用,而且这些工作的准确性将大大提高。而在过去,这些客户相关的工作往往需要耗费大量的人力、物力,并总会产生很多麻烦。
数据能通过释放制造业业务流程中的智能,去提升运营效率。而对于那些不仅想要节约成本、更希望能增加收入的制造商来说,服务,作为可持续的新收入来源,其吸引力要远远超过单纯销售装置或设备。可以将其想象成是在销售订阅服务,而不单单是卖一本杂志,或者是从远在意大利的总部为安装在纽约的设备提供服务。
要真正走上这条变革之路,制造商要做出一系列的抉择,而其中最重要的,就是选择真正有实力的技术合作伙伴。彼此间的信任、员工对应用软件的熟悉程度、对行业知识的掌握、用以连接设备生成数据的智能且安全的云服务、跨设备和服务的可扩充的大数据云平台、互操作能力、丰富的合作伙伴生态系统——上述这些还仅仅是制造商在选择迈进第四次工业革命时,应该用来评估合作伙伴技术能力的部分指标。
在这个普适计算日渐成型的世界中,拥抱数据文化的企业和单位必将获得巨大的潜在回报。尽管未来无法预测,但这一潜力所带来的诱惑,已经在制造业激起了新波的创新浪潮。现在,摆在制造商面前的只有一个问题——去引领这个潮流,抑或任凭自己被浪潮所吞没。
好文章,需要你的鼓励
Meta宣布为Facebook Dating推出AI聊天机器人助手,帮助用户找到更匹配的对象。该AI可根据用户需求推荐特定类型的匹配者,并协助优化个人资料。同时推出Meet Cute功能,每周提供算法选择的"惊喜匹配"。尽管18-29岁用户匹配数同比增长10%,但相比Tinder的5000万日活用户仍有差距。AI功能已成为约会应用标配,Match Group等竞争对手也在大力投资AI技术。
字节跳动团队提出RewardDance框架,首次系统性解决视觉生成中的奖励模型扩展问题。该框架通过将奖励预测转为生成式任务,并将模型规模扩展至260亿参数,同时集成任务指令、参考样例和推理能力,有效解决了"奖励作弊"问题。实验显示,在文本生成图像任务中质量提升10.7分,视频生成性能改善49%,达到行业领先水平,为AI视觉创作提供了更强大可靠的技术基础。
Neo4j认为已找到让生成式AI访问图数据库记录的方法。图数据库专注于数据点之间的关系建模和查询,在欺诈检测、推荐引擎等场景中表现出色。2024年4月,ISO批准了图查询语言GQL标准,Neo4j的Cypher查询语言完全符合该标准。现代工具提供拖拽式工作流程,GenAI可作为自然语言接口,将用户请求转换为Cypher查询。
ByteDance团队开发的Mini-o3系统通过深度多轮推理突破了传统AI视觉理解的局限。该系统能像人类侦探般进行几十轮的视觉探索,在困难的视觉搜索任务上准确率达48%,相比现有模型提升显著。核心创新包括挑战性的Visual Probe数据集、多样化推理策略训练和突破性的过轮掩码技术,实现了测试时思考轮数的自然扩展。