ZDNet至顶网软件频道消息: 网络异常流量突发是经常困扰运维管理人员的问题之一。突发流量可能会造成网络的拥塞,从而产生丢包、延时和抖动,导致网络服务质量下降;不仅如此,突发流量还可能存在安全风险,例如:DoS攻击、蠕虫、窃密等,会对网络和业务系统造成更大的危害。常规的网络管理和流量监控手段通常仅能够看到流量异常突发的现象,却不能够让管理人员深入分析异常流量产生的原因,无法了解异常流量是哪些IP造成的、是否是恶意攻击行为、异常流量的行为特点、传输内容、对网络和业务有多大影响等,导致难以采用正确的处理措施。
科来回溯分析系统能够透视网络流量、回溯历史通信数据包,从而快速判断异常流量突发的根本原因。以下就是一个通过科来回溯分析系统分析异常流量突发成因的案例。
某用户数据中心近期通过网管软件发现有一个重要的业务系统服务器区不定期的会出现流量突发,但用户无法看到是哪台服务器出现异常,也不知道是和谁在通讯。由于这个区域的服务器存储的都是重要的客户信息和计费数据,运维人员非常担心是服务器被渗透造成数据泄密。
为了对突发流量进行精细分析,用户在问题区域部署了科来回溯分析系统进行7×24小时数据采集。设备部署当天我们通过科来回溯分析系统的流量趋势图就观察到了一次持续约10分钟的流量突发,峰值流量达到了其他时段的6倍以上。
通过异常时段的IP会话统计表,我们发现有一个IP会话的流量明显高于其他通讯对,竟然是一台业务服务器(10.199.90.51)与数据中心其他区域的一台主机(10.199.72.168)间的异常通讯造成了流量突发(如图所示)。
用户经过核查确认了10.199.72.168是一台网管系统的主机IP,业务服务器每隔1小时会向网管系统上报日志数据,但每次上报的数据量应该在10MB以下,不应该造成流量突发。
为了进一步分析,我们提取了流量突发时段该异常通讯对数据包通过科来回溯分析系统进行解码分析,还原问题时段突发流量的通讯内容。从两台主机间的数据流内容中,我们看到10.199.90.51在向10.199.72.168发送大量的日志条目,不过这些日志的时间都是一个月以前的,并非最近1小时的日志。
至此,我们初步怀疑是业务服务器上的网管系统插件异常造成了流量突发,可以完全排除网络安全问题导致数据泄密的可能性。网管系统的维护人员根据这一线索对10.199.90.51上的插件进行了排查,发现的确插件程序存在BUG,不定期会上传大量的历史日志。插件BUG修正之后,用户再没有监控到上述的异常流量突发。
由于异常流量突发的成因很多,对网络和业务系统的危害程度也不近相同,在运维管理工作中如果不能对异常流量进行快速、深入的分析,往往会无从下手。这个案例中,异常流量突发困扰了用户将近一个月,通过科来回溯分析系统的数据挖掘和数据包回溯功能一天内就准确找到了问题的根源,消除了用户对信息泄密的担忧,并使问题的到了彻底的解决。
 
 0赞
0赞好文章,需要你的鼓励
 推荐文章
                    推荐文章
                  虽然ChatGPT等AI工具正在快速改变世界,但它们并非无所不知的神谕。ChatGPT擅长"令人信服的错误",经常提供有偏见、过时或完全错误的答案。在健康诊断、心理健康、紧急安全决策、个人财务规划、机密数据处理、违法行为、学术作弊、实时信息监控、赌博预测、法律文件起草和艺术创作等11个关键领域,用户应避免完全依赖ChatGPT,而应寻求专业人士帮助。
这项由哥伦比亚大学研究团队完成的突破性研究首次揭示了AI系统自我改进中的"效用-学习张力"问题:系统追求更好性能时会增加复杂度,但过高复杂度会破坏学习能力。研究建立了学习边界定理,提出双门控制机制,为AI安全自我改进提供了理论基础和实用方案,对确保AI技术长期安全发展具有重要意义。
微软重启三里岛核反应堆的协议确认了AI革命与能源现实主义的融合。亚马逊和谷歌也达成类似协议,共同押注核能为AI未来提供最可行的动力路径。到2030年代,数据中心用电量可能媲美大国水平。国际能源署预测全球电力需求到2050年将增长六倍。核电厂90%的容量因子使其独特适合数据中心需求。世界核协会估计,当前全球398GW核能产能必须在2050年前至少增长两倍。
这项由Reactive AI公司Adam Filipek主导的研究提出了反应式变换器(RxT),通过事件驱动架构和固定大小记忆系统,将传统聊天机器人的对话成本从平方级降为线性级,使长期对话成本降低99%以上,同时实现恒定响应速度。实验证明即使12M参数的RxT也显著优于22M传统模型,为高效对话AI开辟新路径。
 
             
                 
                     
                     
                    