ZD至顶网软件频道消息:数字化企业IT解决方案提供商BMC宣布拓展大数据战略,以使企业级Hadoop?环境实现部署自动化、加快运行并得到安全保护,进而帮助企业出色地运行和维护IT系统,增强在数字化时代的竞争优势。同时,BMC还宣布推出专为提高Hadoop应用部署敏捷性而设计的Control-M Automation API,进一步增强BMC大数据战略的威力。
据了解,Control-M Automation API是一套编程接口,帮助Hadoop设计师、工程师和开发人员以自助服务方式,将Control-M部署在应用发布流程中,提高敏捷性。通过以JSON作为作业定义格式,将GIT和RESTful API用于验证、配置和部署,手工工作流程调度操作可以与首选的Hadoop应用发布及部署流程自动化工具无缝集成。这就使Hadoop项目团队能够缩短开发时间,更快地为拓展业务提供新功能,并提高大数据项目的价值。
据IDC研究表明,“数字宇宙”每两年扩大一倍,预计到2020年,地球上每人每秒钟所产生的新信息将达到1.7MB。这个数字意味着什么?意味着对于企业而言,企业处理的数据量越大、处理速度要求越快、处理的数据种类越多,企业就越需要采取复杂、可扩展的方法管理大数据环境,这是其面临的巨大挑战。所以,管理好这些数据是所有企业成功实现数字化转型的根本前提。反之,企业如果不能很好地分析、利用这些数据,就不能有效的满足客户期望、更谈不上帮助企业缓解竞争压力,轻松面对大数据时代。
BMC企业级解决方案事业部总裁Robin Purohit表示:“为了加速数字化转型,很多企业都在争先恐后地部署大数据项目,以建立新的业务模式、加速业务增长并从根本上改变成本结构。然而,企业在筹建自身的大数据业务时,一旦从‘沙盘推演’进入生产环境,将极大可能遇到非常严峻的挑战:如何与现有的企业应用结合、优化底层基础设施的成本就变得至关重要。BMC大数据解决方案应运而生,旨在为企业成功部署Hadoop生产环境提供了合适的工具。”
BMC大数据解决方案具备以下特色,可帮助企业充分分析、利用数据,为企业管理向数字化转型提供了强有力的支撑:
自动化–Hadoop工作流程与所有已部署应用自动集成,这是快速部署大数据项目、确保可靠性和可扩展性的关键。BMC Control-M解决方案可加快大数据项目部署,实现Hadoop工作流程与数据中心及云中其他应用的无缝集成。
运行加速–大数据项目如果规模很大,就会涉及海量数据,这就要求能够快速扩展基础设施资源。由于数据似乎有无限增长的可能性,因此部署可扩展的基础设施、确保基础设施以峰值性能运行,就变得非常重要。BMCTrueSight Capacity Optimization解决方案帮助企业规划规模得当的Hadoop环境,其中包括计算、存储和网络资源,从而确保有效控制基础设施成本,而BMC TrueSight Operations Management则有助于IT团队提供不间断的服务。
安全防护–企业必须确保应用和数据安全,为了实现这个目标,企业必须首先了解自己拥有哪些资产,资产之间的相互依赖关系。最重要的是,这些资产是怎样为业务提供支持的。通过BMC Discovery企业级管理解决方案,可以全面、动态地查看包括Hadoop、存储、数据分析和消费流程在内的大数据基础设施情况,使IT团队能够全盘了解整个企业的状况,这一点至关重要。如果IT团队对资产状况及其相互之间的依赖关系了如指掌,就能够避免出现孤岛式大数据系统,确保合规,并保护大数据环境安全。
RedMonk公司首席分析师Stephen O‘Grady表示:“大数据日益成为企业战略规划的核心,能够在生产环境中高效管理大规模Hadoop部署变得越来越重要。作为老牌企业级管理解决方案提供商,BMC的核心是建立丰富的企业管理经验及在大数据领域、尤其是Hadoop环境中的专长。
Malwarebytes公司数据科学与工程高级总监Darren Chinen表示:“Control-M for Hadoop拥有独一无二的地位,可以在Hadoop内外集中实现工作负载的自动化管理,使我们能够全面控制和查看整个大数据生态系统。作为一家现代企业,云基础设施使我们实现了弹性扩展,并能够按照工作负载时长管理计算成本。Control-M则使我们能够在云存储基础架构下,管理云基础设施、Hadoop应用和ETL作业,以及进行状态显示板更新。”
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。