ZD至顶网软件频道消息: 谷歌承认自己的云出问题了。而且是“再一次”。
最近的发生混乱发生于6月28日,us-central1-a 中的Google Compute Engine SSD Persistent Disks“在一个区域内经历了高层写入延迟和错误,这种情况持续了211分钟。”这场混乱意味着磁盘可能停止接受写入,而将SSD作为根分区的实例有可能会挂起。
虽然,谷歌云平台除了故障,但是谷歌对故障的披露方面还算令人信服。对于此次问题,谷歌表示:“两个并发的日常维护事件触发了Persistent Disk底层的分布式存储系统中的数据再平衡。”
不过用户不用担心这种“再平衡”,因为“这种再平衡旨在让维护时间对用户不可见,通过在不可用的存储设备和机器上平均地重新分布数据来实现。”
这正是云平台应该做到的:很多部件都在后台运行,对你来说是不可见的,它们维持着服务器的正常运转。
但是这一次,“一个以前没有发现的软件bug,由两个并发的维护事件触发,意味着因为再平衡变得不可用的磁盘块没有释放供随后再度使用,消耗了这个区域中的可用SSD空间,直到写操作被拒绝才被发现。”
一旦磁盘认为它们已经用光了所有的空间,就没有更聪明的机制在后台纠正这一错误了,以至于谷歌花了211分钟才找到问题并且解决问题。
和往常一样,谷歌承诺未来会做得更好,并且表示其“工程师正在改进自动监控,这样如果问题再次出现,工程师将会在用户受到影响之前就得到预警。我们还改进了我们的自动化,以更好地协调同一区域内不同的维护操作,减少必要情况下还原此类操作所需要的时间。”
正如我们在之前提到的,谷歌在面临故障及其产生原因的时候,比其竞争对手更加坦率。但是这家公司似乎也有更多的故障需要披露:《The Register》监测了三大云平台的故障通告,谷歌发布的问题数量比AWS和微软都要多,而这两家公司的云平台规模更大,产品也更多。
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。
这项研究由中国科学技术大学的研究团队提出了Pro3D-Editor,一种新型3D编辑框架,通过"渐进式视角"范式解决了现有3D编辑方法中的视角不一致问题。传统方法要么随机选择视角迭代编辑,要么同时编辑多个固定视角,都忽视了不同编辑任务对应不同的"编辑显著性视角"。Pro3D-Editor包含三个核心模块:主视角采样器自动选择最适合编辑的视角,关键视角渲染器通过创新的MoVE-LoRA技术将编辑信息传递到其他视角,全视角精修器修复并优化最终3D模型。实验证明该方法在编辑质量和准确性方面显著优于现有技术。
这项研究提出了ComposeAnything,一个无需重新训练的框架,可显著提升AI图像生成模型处理复杂空间关系的能力。该技术由INRIA、巴黎高师和CNRS的研究团队开发,通过三个创新步骤工作:首先利用大型语言模型创建包含深度信息的2.5D语义布局,然后生成粗略的场景合成图作为先验指导,最后通过物体先验强化和空间控制去噪引导扩散过程。在T2I-CompBench和NSR-1K基准测试中,该方法远超现有技术,特别是在处理复杂空间关系和多物体场景时表现卓越,为AI辅助创意设计开辟新可能。