ZD至顶网软件频道消息: 应收账款管理是一个复杂且多样化的问题,现在,在可靠的分析技术支持下,应收账款管理逐渐成为了可高效运作的业务。
亚洲信贷监察是最早的信用管理服务的提供者之一,在香港本地及其他亚洲国家和地区进行应收账款管理,致力于通过数据分析筛选具有较高还款能力的债务人,进而从操作的角度上增加应收账款管理的成功率,从长远角度提高整体业务的效率。
在部署SAS解决方案之前,亚洲信贷监察遇到了影响其业绩的几个难点,其中最大的挑战就是可用数据的分布十分零散,其不具备对这些数据的进行全面分析的能力。除此之外,因为不同的项目需要不同的资源配置,而对优先性的排序主要靠操作人员的专业知识和过往经验,因此会出现一些效率低下、资源配置不当的情况。
经过评估后,亚洲信贷监察与SAS香港密切合作进行项目的实施,利用SAS为公司的应收业务量身定做的整体解决方案,构建了数据模型,从而成功地提高了运营效率。
亚洲信贷监察(控股)有限公司行政总裁兼执行董事黄镜兴表示:“这个项目的实施只用了三个月,结果令人振奋。SAS通过其卓越的技术能力和专业知识,将分析与我们的业务相结合。我们运用SAS模型来支持整个应收业务流程,帮助我们从整体上认知债务人。例如,SAS 企业级数据挖掘器(SAS Enterprise Miner)的描述和预测建模提供的洞察观点,能帮助我们做出更好的决策,SAS可视化分析(SAS Visual Analytics)也有助于我们用更智能、更快速、更简便的方法,直观地探索所有相关数据。”
黄镜兴对该项目的实施成果很满意:“SAS在数据分析方面实力强大,是高级分析和商业智能领域公认的市场领导者。SAS向我们提供了一种更科学的方法,改变了我们之前主要依靠操作人员的经验去判断支付行为以及债务人支付拖欠货款的可能性的状况。我们相信,在这个数据驱动的商业世界,部署SAS分析解决方案让我们的应收业务更智能、更有效。”
好文章,需要你的鼓励
字节跳动智能创作实验室发布革命性AI视频数据集Phantom-Data,解决视频生成中的"复制粘贴"问题。该数据集包含100万个跨场景身份一致配对,通过三阶段构建流程实现主体检测、多元化检索和身份验证,显著提升文本遵循能力和视频质量。
这是一项关于计算机视觉技术突破的研究,由多家知名院校联合完成。研究团队开发了LINO-UniPS系统,能让计算机像人眼一样从不同光照下的照片中准确识别物体真实的表面细节,解决了传统方法只能在特定光照条件下工作的局限性,为虚拟现实、文物保护、工业检测等领域带来重要应用前景。
被盗凭证导致80%的企业数据泄露。随着AI智能体投入生产,管理10万员工的企业将需要处理超过100万个身份。传统身份访问管理架构无法应对智能体AI的大规模部署。领先厂商正采用蓝牙低功耗技术替代硬件令牌,实现基于距离的身份验证。行为分析可实时捕获被入侵的智能体,零信任架构扩展至智能体部署。这代表了自云计算普及以来最重要的安全变革。
这篇文章介绍了北京人工智能研究院开发的OmniGen2模型,一个能够同时处理文字转图像、图像编辑和情境生成的全能AI系统。该模型采用双轨制架构,分别处理文本和图像任务,并具备独特的自我反思机制,能够自动检查和改进生成结果。研究团队还开发了专门的数据构建流程和OmniContext评测基准,展现了开源模型的强大潜力。