ZD至顶网软件频道消息:AWS 年会消息:AWS表示已经开始打造自己的芯片,目的是为旗下庞大的云服务流量提供帮助。
盈利的AWS隶属亚马逊帝国。AWS表示已开始在AWS服务器里使用特别设计过的Annapurna ASIC芯片,为控制物理网络及SDN网络的流量出一把力。这样做可以腾出数以万计的CPU,以集中处理计算任务。
该款定制芯片也是推动AWS自定义网络架构的动力。AWS自定义网络架构用的是25 GB 太网网。亚马逊认为25 GB 太网网事实上比常用的10 GB太网网和40 GB太网网标准更具扩展性及更高效。
亚马逊副总裁和杰出工程师James Hamilton本周在拉斯维加斯召开的AWS re:Invent大会上表示,这些芯片提供了另一个层面上的灵活性,可以对亚马逊旗下专门托管AWS云实例的所有数据中心进行优化。另外,使用了这些芯片后,亚马逊可以在网络方面采用不同的方法,他称这也反映出业界的大趋势是摈弃传统的封闭路由器盒。
Hamilton还表达如下的看法,“不妨看一下时下的网络状态,它基本上就是20年前服务器的状态。只要将垂直堆栈分离肢解,各种公司之间就会出现竞争和合作,大事情就会发生。”
亚马逊在构建旗下18个 AWS数据中心区时采用的方法在很多情况下也是这样做的。每个区有多个构造群(按AWS的说法是 “可用性区域”),每个群里安装了多达30万台服务器,另外尚有别的“运输中心”构造群,里面是亚马逊全球网络的网络系统。每个可用性区域的功率为2500-3000万瓦,不过Hamilton称,亚马逊可能会将其扩展到2亿5000万瓦,前提是这样做从经济的角度上考量有益处。
Hamilton估计AWS计算能力每天的增加量大约可满足一家财富500强公司的计算需求。
他表示,“AWS在2015年里部署的服务器容量可以支持2005年的亚马逊,亚马逊当时已经是一家身家值84.9亿美元的企业了。”
AWS对硬件的兴趣极大,在很大程度上已经在从服务器设计到ASIC芯片的旗下各种网络设备上拥有话语权。AWS的机架式服务器是专为AWS云实例打造的,这些服务器其实非常小,机壳里几乎一半是空的。
Hamilton表示,这些设计简约的服务器比从供应商购买的服务器在功率和散热方面效率都要高得多。
他表示,“OEM销售给客户服务器密度可能是三、四、或五倍,效率较低。他们会多收费补上。”
AWS存储超大,其设计同样也令人印象深刻。亚马逊服务需处理巨大的数据负载,用到的服务器设备密度极大。比如,一个存储盒的容量高达8.8 PB,含1110个硬盘,只用了一个42 U机架。整个盒子重2778磅。Hamilton称,该存储盒其实是一款老系统。
时至今日,规模已经扩展到AWS够用了。Hamilton表示,他认为目前的数据中心设施的规模就物理尺寸上而言已经是最佳的了,未来计划的区不会比现在用的设施大许多。
Hamilton 称,“已经快到了再做大的益处已经很小的地步了。”
他表示,“我们觉得这种大小正好。我们的花费多一点,不过我们认为对用户来正好。”
好文章,需要你的鼓励
AI正在革命性地改变心脏疾病治疗领域。从设计微创心脏瓣膜手术到预防原理定位,机器学习和神经网络的洞察力推动了巨大进步,甚至可以构建新型移植解剖结构。数字孪生技术为个性化心血管护理提供持续预测管理。哈佛干细胞研究所的研究人员利用纳米材料和类似棉花糖机的设备,能在10分钟内制造心脏瓣膜,相比传统3周制造时间大幅缩短。这些突破性技术为每年4万名先天性心脏畸形儿童带来新希望。
这项由斯坦福大学和特拉维夫大学合作的研究揭示了语言模型内部存在三套协同工作的信息处理机制:位置机制、词汇机制和反射机制。研究发现,当文本复杂度增加时,传统的位置机制会变得不稳定,其他两种机制会自动补偿。这一发现解释了AI在长文本处理中的表现模式,为优化模型架构和提升AI可靠性提供了重要理论基础。
谷歌正在为搭载其内置信息娱乐系统的汽车推出谷歌地图实时车道引导功能,首先从极星4开始。该系统利用车辆前置摄像头和AI技术,分析车道标线和路标,为驾驶者提供更精确的车道指引和视听提示。该功能将在未来几个月内在美国和瑞典的极星4车型上推出,目前仅支持高速公路使用。
加州大学圣克鲁兹分校联合英伟达等机构开发出世界首个医学离散扩散模型MeDiM,实现了医学影像与报告的双向生成。该系统能根据临床报告生成对应影像,也能看图写报告,甚至可同时生成匹配的影像-报告对。在多项评估中表现优异,为医学教育、临床研究和辅助诊疗提供了强有力的AI工具。