ZD至顶网软件频道消息:AWS 年会消息:AWS表示已经开始打造自己的芯片,目的是为旗下庞大的云服务流量提供帮助。
盈利的AWS隶属亚马逊帝国。AWS表示已开始在AWS服务器里使用特别设计过的Annapurna ASIC芯片,为控制物理网络及SDN网络的流量出一把力。这样做可以腾出数以万计的CPU,以集中处理计算任务。
该款定制芯片也是推动AWS自定义网络架构的动力。AWS自定义网络架构用的是25 GB 太网网。亚马逊认为25 GB 太网网事实上比常用的10 GB太网网和40 GB太网网标准更具扩展性及更高效。
亚马逊副总裁和杰出工程师James Hamilton本周在拉斯维加斯召开的AWS re:Invent大会上表示,这些芯片提供了另一个层面上的灵活性,可以对亚马逊旗下专门托管AWS云实例的所有数据中心进行优化。另外,使用了这些芯片后,亚马逊可以在网络方面采用不同的方法,他称这也反映出业界的大趋势是摈弃传统的封闭路由器盒。
Hamilton还表达如下的看法,“不妨看一下时下的网络状态,它基本上就是20年前服务器的状态。只要将垂直堆栈分离肢解,各种公司之间就会出现竞争和合作,大事情就会发生。”
亚马逊在构建旗下18个 AWS数据中心区时采用的方法在很多情况下也是这样做的。每个区有多个构造群(按AWS的说法是 “可用性区域”),每个群里安装了多达30万台服务器,另外尚有别的“运输中心”构造群,里面是亚马逊全球网络的网络系统。每个可用性区域的功率为2500-3000万瓦,不过Hamilton称,亚马逊可能会将其扩展到2亿5000万瓦,前提是这样做从经济的角度上考量有益处。
Hamilton估计AWS计算能力每天的增加量大约可满足一家财富500强公司的计算需求。
他表示,“AWS在2015年里部署的服务器容量可以支持2005年的亚马逊,亚马逊当时已经是一家身家值84.9亿美元的企业了。”
AWS对硬件的兴趣极大,在很大程度上已经在从服务器设计到ASIC芯片的旗下各种网络设备上拥有话语权。AWS的机架式服务器是专为AWS云实例打造的,这些服务器其实非常小,机壳里几乎一半是空的。
Hamilton表示,这些设计简约的服务器比从供应商购买的服务器在功率和散热方面效率都要高得多。
他表示,“OEM销售给客户服务器密度可能是三、四、或五倍,效率较低。他们会多收费补上。”
AWS存储超大,其设计同样也令人印象深刻。亚马逊服务需处理巨大的数据负载,用到的服务器设备密度极大。比如,一个存储盒的容量高达8.8 PB,含1110个硬盘,只用了一个42 U机架。整个盒子重2778磅。Hamilton称,该存储盒其实是一款老系统。
时至今日,规模已经扩展到AWS够用了。Hamilton表示,他认为目前的数据中心设施的规模就物理尺寸上而言已经是最佳的了,未来计划的区不会比现在用的设施大许多。
Hamilton 称,“已经快到了再做大的益处已经很小的地步了。”
他表示,“我们觉得这种大小正好。我们的花费多一点,不过我们认为对用户来正好。”
好文章,需要你的鼓励
Apple TV在企业和零售环境中被严重低估。虽然它易于远程管理、稳定性强,能完美融入现有的设备管理流程,但仍未发挥全部潜力。主要障碍是缺少以太网供电(PoE)功能,导致大规模部署复杂化。目前需要两根线缆连接,增加了安装成本和故障风险。如果Apple TV支持PoE并采用更紧凑的设计,将成为数字标牌、会议室显示等企业应用的理想选择。
北京大学团队开发的DragMesh系统通过简单拖拽操作实现3D物体的物理真实交互。该系统采用分工合作架构,结合语义理解、几何预测和动画生成三个模块,在保证运动精度的同时将计算开销降至现有方法的五分之一。系统支持实时交互,无需重新训练即可处理新物体,为虚拟现实和游戏开发提供了高效解决方案。
谷歌翻译最新更新将原本仅限于Pixel Buds的实时语音翻译功能扩展至所有耳机,支持超过70种语言。该功能今日开始测试版推出,仅需兼容的安卓手机和翻译应用。更新还包括基于Gemini的改进文本翻译,能更准确处理习语和俚语等表达。同时扩展了练习功能至20个新国家,提供基于AI的个性化语言学习课程。
达尔豪斯大学研究团队系统性批判了当前AI多智能体模拟的静态框架局限,提出以"动态场景演化、智能体-环境共同演化、生成式智能体架构"为核心的开放式模拟范式。该研究突破传统任务导向模式,强调AI智能体应具备自主探索、社会学习和环境重塑能力,为政策制定、教育创新和社会治理提供前所未有的模拟工具。