根据Gartner的最新预测,2017年全球商业智能(BI)和分析软件市场收入预计将达到183亿美元,相比2016年增长7.3%,到2020年该市场预计将突破228亿美元。
据Gartner称,现代商业智能和分析继续以超过整体市场的速度扩张,这弥补了传统商业智能支出的下滑。最近几年出现了不少现代商业智能和分析平台以满足新的需求:可访问性、敏捷性、更深度的分析洞察、从IT主导的、系统记录报告转向业务主导的、包括自助服务的敏捷分析。
然而,现代商业智能和分析市场预计将减速,从2015年63.6%的增幅减少到2020年的19%。Gartner认为,这反映了数据和分析逐渐成为主流。该市场在席位扩张方面呈现增长,但是收入会受到定价压力的抑制。
Gartner研究副总裁Rita Sallam表示:“采购决策仍将受到企业高管以及那些希望有更高敏捷性、可选择小型个人和部门级部署以证明成功的用户的影响。企业友好的采购模式对于成功部署将变得越来越重要。”
Gartner认为,快速变革的现代商业智能和分析市场正在受到以下七大动态的影响:
1、大规模现代商业智能将主导新的采购——虽然商业用户最初涌入新的现代工具市场是因为这些工具在不需要IT辅助的情况就可以使用,对监管越来越高的需求将成为IT重新参与进来的催化剂。从企业层面来看,支持更高可访问性、敏捷性和分析洞察力的现代商业智能工具将主导新的采购。
2、新的创新厂商和知名厂商将推动下一波市场变革——智能数据发现能力、机器学习和整个分析工作流自动化的兴起,将推动新一波的采购热潮,因为其中存在缩短从高级分析中获得洞察、将洞察提供给企业中更多人的潜在价值。虽然这个“智能”热潮正在受到有创新性的初创公司的推动,但是传统商业智能厂商也在缓慢地进行调整以适应目前的“现代化”浪潮,他们在某些情况下也起到了推动发展的作用。
3、需要复杂数据集推动数据准备中的投资——商业用户希望分析多样化的、通常很大且更为复杂的数据来源和数据模型,速度超过以往任何时候。以自动化的方式快速准备、清理、丰富和发现可信赖的数据集,这一能力亿i纪念馆成为一个重要的推动力。
4、可扩展性和可嵌入性将成为扩大使用和增强价值的关键推动力——互联网的用户和客户要么使用更加自动化的工具,要么把分析嵌入到后台使用的应用中,或者两者兼有。内嵌和扩展分析内容的能力,将成为推动普及和从分析中获取价值的关键因素。
5、支持实时事件和流数据将扩大使用——组织机构将越来越多地利用设备、传感器和人生成的流数据来快速决策。厂商们需要投资类似的能力,为采购者提供把实时分析与流数据和其他类型源数据结合其他的单一平台。
6、对云部署的兴趣将越来越高——商业智能和分析平台的云部署有降低总拥有成本和缩短部署时间的潜力。不过,企业仍然有很多数据是保存在本地中的,这将成为阻碍采用的一大障碍。不过这个情况正在发生改变,Gartner预计到2020年大多数新许可的采购都将是针对云部署的。
7、市场将为企业机构创造机会,采购和售卖分析能力,加速获得洞察——一个活跃的市场中,采购者和售卖者聚合到一起交换分析应用、聚合数据源、自定义可视化及算法,这将引发越来越多对商业智能和分析的兴趣,推动未来的进一步增长。
Sallam表示:“很多新的创新厂商将不断涌现,来自大厂商对创新的重大投资、以及获得风投的初创公司,这些都将让企业机构从中受益。然而,他们需要特别小心,当多种单独解决方案快速展现业务价值、不需要特别关注设计、实施和支持的情况下投入生产环境中可能导致的技术债务。”
好文章,需要你的鼓励
新创公司Germ为Bluesky社交网络推出端到端加密消息服务,为用户提供比现有私信更安全的聊天选项。经过两年开发,该服务本周进入测试阶段,计划逐步扩大测试用户规模。Germ采用新兴技术如消息层安全协议和AT协议,无需手机号码即可实现安全通信。用户可通过"魔法链接"快速开始聊天,利用苹果App Clips技术无需下载完整应用。
这项研究由哈佛大学团队开发的创新框架,解决了多机构数据共享的核心难题。他们巧妙结合联邦学习、局部差分隐私和公平性约束,使不同机构能在保护数据隐私的同时协作开发更准确、更公平的决策模型。实验证明,该方法在多个真实数据集上既保障了隐私,又显著提升了模型公平性,为医疗、金融和政府等领域的数据协作提供了实用解决方案。
高通公司宣布正在与领先的超大规模云服务商进行深度合作谈判,开发专用于数据中心的CPU产品。CEO阿蒙表示,公司正在开发通用CPU和推理集群产品,预计2028财年开始产生收入。同时,高通面临三星在高端智能手机市场的竞争压力,三星计划在2026年推出采用2纳米工艺的新款Exynos处理器。高通Q3财报显示营收增长10%至103.5亿美元,净利润增长25%。
Meta AI研究团队开发的ALOHA系统是一种低成本开源的双臂机器人远程操作平台,旨在使机器人学习更加民主化和普及化。该系统结合了价格亲民的硬件设计和先进的行为克隆学习算法,使机器人能够从人类示范中学习复杂技能。研究表明,ALOHA系统展示了强大的泛化能力,能够在新环境中应用所学技能,如打开不同类型的瓶子。系统的开源性质鼓励全球研究者参与并推动机器人学习领域的发展,尽管仍面临成本和精确力控制等挑战。