ZD至顶网软件频道消息:11月30日,百度云智峰会在北京拉开帷幕。在上午峰会主论坛上,百度副总裁王路与太原铁路局局长赵春雷,福田汽车集团总裁、福田商用汽车集团总裁宋术山,南方航空电子商务部副总经理王景成,中国海事局曾辉共同发布智能交通生态联盟。
百度云分享自身在云计算、人工智能和大数据领域的技术优势,构建“交通大脑”,与合作伙伴一起促进交通运输领域的技术创新和应用,发展智能交通,推动交通运输更智能、更高效、更安全地运行和发展。
交通领域变革在即 智能交通时代来临
如果将国民经济看作一个生命体,那么交通则是它的血脉。然而,随着经济建设的迅猛发展,交通的发展却出现了严重的失衡与滞后。交通拥堵成为城市的恶疾,物流的低效甚至严重影响经济的发展。目前我国每年仅因天气导致航班延误或取消,经济损失就多达数百亿。
当资源的开发逼近极限,单纯依靠工程建设已无法解决现有的交通问题,唯有建立更智能、高效的交通系统才是未来交通发展最具想象力的解决方案。从国家政策层面来看,今年7月国家发改委和交通运输部联合发布的《推进"互联网+"便捷交通促进智能交通发展的实施方案》,旨在推动智能交通稳步发展。
作为一家以技术驱动为核心竞争力的公司,百度通过百度云分享自身在云计算、大数据和人工智能等领域的技术优势,通过构建可以计算、分析、处理庞大交通数据的“交通大脑”,打破海陆空以及行政区域的限制,实时抓取散落在各个路面交通、地下交通、空中航线的海量数据。
同时通过百度拥有的全球最大规模的深度神经网络、最大深度机器学习开源平台,对交通大数据的有效归类、提取、利用,实现多系统配合协调,建立起一个更安全、更高效、更准确的智能交通体系。
智能交通生态联盟发布 囊括陆海空车
此次百度云与中国海事局、太原铁路局、南方航空公司、福田汽车达成深度合作,成立覆盖陆海空车的智能交通生态联盟。目前,诸多合作已在进行中。相信随着合作的深入,必将改变交通现状,推动中国智能交通的发展。
在与太原铁路局的合作中,双方共建国内首家集铁路、航空和公路三位一体多式联运的物流云平台。通过百度云的接入,该平台可打通货物在公路、铁路、航空的运送及仓储信息;并利用大数据进行资源调配,通过人工智能深度学习物流管理,优化调度效率可达59%。
另一方面,百度云还将与中国南方航空共同推进智能航空计划,将通过大数据实现对于航班、旅客、机票、航站楼、天气等信息的综合分析调度。同时共同推进大数据营销、新一代信息技术和百度云的推广应用、消费信贷等多方面的合作探索,为用户打造一站式的智能出行服务平台。
同样基于百度云技术,将通过与中国海事局的合作,海事港口、船舶及相关水上设施信息也将实现联通和数据的共享,加强程控,降低成本,合力提升海运管控能力。
从陆地到海洋再到空中,百度云并不满足于交通体系的立体扩张,还要创造全新的交通方式。百度目前正在推进可以感知车辆行驶、预测交通状况的智能汽车和无人汽车的发展。百度无人车已成为国内外瞩目的前沿科技代表,在去年完成了实地路测,并在今年的乌镇峰会上再次亮相。
在智能汽车的商业化方面,百度已与国内知名商用车企业福田汽车达成战略合作。双方已联合发布了国内首款无人驾驶卡车。未来,百度将与福田汽车在汽车大数据、智能驾驶领域深入合作,开发出更多具备智能驾驶的商用车产品
云计算、人工智能和大数据已成为新一轮产业革命的核心驱动力,百度云将透过云生态下的“交通大脑”,依托智能交通生态联盟,加强行业合作,挖掘数据中的更多价值,推进智能交通的全面云端化,突破前所未及的高度,让智能,计算无限可能。
好文章,需要你的鼓励
Intuit在ChatGPT发布后匆忙推出的聊天式AI助手遭遇失败,随后公司进行了为期九个月的战略转型。通过观察客户实际工作流程,发现手动转录发票等重复性劳动,决定用AI智能体自动化这些任务而非强加新的聊天行为。公司建立了三大支柱框架:培养构建者文化、高速迭代替代官僚主义、构建GenOS平台引擎。最终推出的QuickBooks支付智能体让小企业平均提前5天收到款项,每月节省12小时工作时间。
希伯来大学研究团队开发出MV-RAG系统,首次解决了AI在生成稀有物品3D模型时的"胡编乱造"问题。该系统像拥有图像记忆库的艺术家,能先搜索相关真实照片再生成准确3D视图。通过独创的混合训练策略和智能自适应机制,MV-RAG在处理罕见概念时性能显著超越现有方法,为游戏开发、影视制作、虚拟现实等领域提供了强大工具。
马斯克旗下xAI公司发布专为开发者设计的新AI模型grok-code-fast-1,主打快速且经济的推理能力。该模型属于Grok 4系列,具备自主处理任务的能力。xAI声称其在SWE-bench评测中解决了70.8%的实际软件问题,表现优于GPT-5和Claude 4。不过模型存在较高的不诚实率问题。用户可通过GitHub Copilot等平台免费试用7天,需要API密钥访问。
MBZUAI等机构研究团队通过一维细胞自动机实验揭示了AI模型多步推理的关键限制:固定深度模型在单步预测上表现优异,但多步推理能力急剧下降。研究发现增加模型深度比宽度更有效,自适应计算时间、强化学习和思维链训练能突破这些限制。这为开发更强推理能力的AI系统提供了重要指导,强调了真正推理与简单记忆的本质区别。