至顶网软件频道消息:近日,Adobe宣布了Adobe Creative Cloud在影片编辑方面的重大更新,帮助视频工作者与影片制作人员相互协作并简化了影片工作流程。更新后的Creative Cloud现在可以开始使用,它提供了图形、标题、动画、音频优化和资产共享等新功能、支持最新的影像格式如HDR、VR和4K、与Adobe Stock的全新整合,并可通过Adobe Sensei 提供先进的人工智能功能。Adobe在2017年Adobe Summit上发表的Experience Cloud也让品牌可以在分析广告效果及营收的同时,横跨各个屏幕为用户提供大规模且连贯的影片体验。
科技的进步以及消费者对有影响力且具有个性化内容的需求逐步增长,要求影片制作者比以往能更快地创作、传递并从视频资产中获利。不论是大型影片工作室,还是新一代的视频制作者,都需要一个可扩展的端到端的解决方案,通过强大的分析和广告工具来创建、协作并简化影片工作流程以实现内容优化并增值的目的。
曾荣获三次奥斯卡金像奖并担任《奇幻森林》视觉特效总监的 Rob Legato表示:“一直以来,我都使用Adobe的创意程序来完成影片所需要的可视化部分,比如我早期的电影《飞行家》、《阿凡达》及《雨果》。近些年,Adobe开创性地促进了科技的发展,比如Adobe Premiere Pro和After Effects之间的动态链接,Cinema 4D与After Effects的整合及本地工作流程。通过Creative Cloud可以帮助我进行所有电影的预先可视化及自由的操作,这为我们提升创作过程提供了机会。”
Adobe中国区数字媒体总监杨坚先生表示:“Adobe自去年在中国大陆推出Creative Cloud以来,正在实时为中国的创意人士带来最前沿的技术。本次与全球同步为中国视频剪辑创作者们带来的视频工具更新整合了Adobe Sensei的尖端科学,能够帮助创意专业人士更快更好地完成作品。无论是主流媒体公司还是视频制作者,他们都可以将自己的创意视野带入生活,而无需成为动态图像或音效方面的专家。”
新功能从始至终强调创意
Creative Cloud 全新影片工具功能包括:
拥有Adobe Sensei的技术支持
通过Adobe人工智能和机器学习框架Adobe Sensei ,用户在Premiere Pro或Audition中轻轻一点,即可在时间轴上实现音频音量自动标准化。在Character Animator中,Sensei实时应用复杂的算法,确保与人偶的唇形完美同步。在Adobe Experience Cloud中,影片推荐引擎通过数百亿在线影片消费积分的学习,使观众获得最相关的内容。
与Adobe Experience Cloud相整合
无论是创意机构还是媒体公司,影片创作者需求的改变反映着数据趋势的未来,Adobe Experience Cloud从跨屏幕的内容传递到评测再到获取利润,都能优化整个影片旅程。通过Adobe的电视媒体管理平台,媒体公司和广播公司可以利用分析功能,为广告客户提供真正的基于观众定位和更准确的预测。Adobe Analytics Cloud可以将Premiere Pro中发布的社交媒体频道的性能影片内容用于评测,并确保影片广告高准确的定位和预测。
Adobe Advertising Cloud填补了传统电视与数字影片广告之间的间隙,简化了广告规划和购买流程,通过动态创意优化(DCO)实现了与广告代理机构的更深入的合作,并确保影片广告的品牌影像能在保证最大安全性的前提下与业界最多的第三方相整合。
好文章,需要你的鼓励
计算机历史博物馆软件馆长Al Kossow成功恢复了上月在犹他大学发现的半世纪前磁带内容。UNIX V4是首个内核用C语言编写的UNIX操作系统版本,已从1970年代九轨磁带中成功恢复。现可从互联网档案馆下载并在SimH中运行。该版本包含约5.5万行代码,其中2.5万行为C语言,内核仅27KB大小。恢复过程使用了readtape程序采样原始磁通变化进行数据重建。
新加坡南洋理工大学研究团队提出"棱镜假设",认为图像可像光谱一样分解为不同频率成分,低频承载语义信息,高频包含视觉细节。基于此开发的统一自编码系统UAE,通过频率域分解成功统一了图像理解和生成能力,在多项基准测试中超越现有方法,为构建真正统一的视觉AI系统提供了新思路,有望推动计算机视觉技术向更智能统一的方向发展。
亚马逊云服务宣布其存储网关现已支持Nutanix的AHV虚拟化管理程序,进一步扩展混合云存储解决方案。此前AWS存储网关已支持VMware ESXi、微软Hyper-V和Linux KVM。由于AHV基于KVM架构,AWS表示添加支持相对容易。随着Broadcom收购VMware后策略调整,许多企业正寻求替代方案,Nutanix成为热门选择。分析师预测VMware可能在三年内失去35%的工作负载。
芝加哥伊利诺伊大学团队提出QuCo-RAG技术,通过检查AI训练数据统计信息而非内部信号来检测AI回答可靠性。该方法采用两阶段验证:预检查问题实体频率,运行时验证事实关联。实验显示准确率提升5-14个百分点,在多个模型上表现稳定,为AI可靠性检测提供了客观可验证的新方案。