至顶网软件频道消息: 微软发布了Embedded Learning Library,为开发人员提供了Raspberry Pi和其他开发者面板的预先训练好的图像识别模型。
Embedded Learning Library (ELL)的早期预览现在可以在GitHub上使用,它是微软将其机器学习软件小型化工作的一部分,使其适用于使用极低工号芯片、不连接到云端的设备上各种设备。
正如该公司在博客文章中解释的那样,微软研究实验室的一个团队正在努力压缩其机器学习模型,使其能够在体积不不超过面包屑的ARM处理器Cortex-M0上工作。
微软的目的是将机器学习推送到未连接到互联网的设备,如脑植入物。微软的Pix iPhone照片应用程序的新艺术功能在设备上使用人工智能,但其计划是使其能够运行在功能更弱的芯片上,例如脑植入,这些芯片可能需要在没有网络连接的情况下工作。
目前的压缩工作让机器学习模型缩小了10到100倍,但是要使其能够在Cortex M0上运行,模型需要缩小1000到10,000倍。
然而,今天,ELL可用于相对强大和庞大的Raspberry Pi、Arduinos、BBC微处理器和其他的微控制器。
这些设备的ELL依赖于为云训练的压缩机器学习模型,而在Cortex-M0上使用的训练算法中的工作则针对特定场景进行过调整。
研究人员测试过的最小的器件是具有2千字节RAM的单板计算机Arduino Uno。
微软研究机器学习和优化部门的主要研究人员Ofer Dekel在他的院子里训练了计算机视觉模型来处理松鼠问题。Dekel将模型部署在一个与网络摄像头连接的Raspberry Pi 3上,当它检测到一只松鼠时,它会打开喷淋系统。
他在GitHub上为制造商们提供了开始使用类似系统的说明,该系统识别对象并打印描述其内容的标签。
好文章,需要你的鼓励
微软研究院推出VIBEVOICE,这是一种革命性的AI语音合成技术,能够一次性生成长达90分钟的多人对话音频。
成均馆大学团队开发出选择性对比学习新方法,让机器通过观察人类交互场景学会识别物体功能部位。该技术突破传统局限,采用动态学习策略,能根据信息质量调整学习方式,在多个数据集上显著超越现有方法,为机器人、自动驾驶等领域的智能交互应用奠定重要基础。
微软与三星达成合作,将Copilot人工智能助手集成到三星的智能电视和显示器产品中。用户可以通过语音或遥控器直接与Copilot交互,获得智能问答、内容推荐、设备控制等服务。这一合作标志着AI助手从传统计算设备向家庭娱乐设备的进一步扩展,为用户提供更加智能化的观看体验。
新加坡南洋理工大学研究团队开发出EgoTwin系统,这是首个能够根据文字描述同时生成第一人称视频和匹配人体动作的AI框架。该系统通过创新的头部中心动作表示方法和因果交互机制,解决了视角对齐和动作画面同步的核心难题,在17万样本的真实数据集上实现了显著性能提升,为VR内容创作、影视制作等领域提供了新的技术可能。