至顶网软件频道消息:就如移动设备从根本上改变了用户的互动方式,语音交互界面也有着同样的潜力。最新的Adobe Analytics数据显示,随着新一代产品不断地推进着创新和用户需求,语音设备的网络销量同比去年增长了39%。
7月3日,Adobe宣布推出Adobe Analytics Cloud语音分析新功能,该功能能够帮助品牌交付更为个性化的用户体验,并通过基于语音的交互界面提高品牌忠诚度。在Adobe Sensei的人工智能与机器学习功能的帮助下,通过对语音数据的深度分析,品牌既能加深对客户的了解并给出相应的建议,也能将传统的、复杂的人工分析自动化。品牌能够根据分析结果更快地采取行动,从而在交付卓越用户体验的同时,激活诸如电子邮箱和广告等其他接触点。
Adobe Analytics Cloud副总裁Bill Ingram表示:“ 正如我们在移动和视频方面看到的这样,当前科技领域中最重要的趋势之一就是用户能够越来越快地适应与内容互动的新方式。我们预计语音设备也将拥有类似的发展轨迹。Adobe已经重塑了网络、移动和用户分析,而现在,Adobe Analytics Cloud 可以使各种规模的品牌都能将语音数据的分析洞察应用于用户体验的整个旅程。”
通过Adobe Analytics Cloud,企业能够捕捉并分析所有包括Amazon Alexa、Apple Siri、 Google Assistant、Microsoft Cortana和Samsung Bixby在内的主流平台上的语音数据。这项新功能既能捕捉用户命令(如“给我播放一首歌”),也能捕捉特定的参数(如“甲壳虫乐队的歌”),解决了分析语音互动中的复杂性问题。新功能还提供了额外取值点,包括使用频率以及语音请求出现后的响应措施等。
Adobe Sensei使得团队能够专心于打造提高语音体验的客户互动,例如提供更相关的内容。举例来说,一家连锁酒店可以通过客户忠诚计划马上识别客户,并在此基础上为旅客提供奖励积分的使用建议,如购买现场演出门票或用于下一次房间预订。酒店甚至可以在最忠实客户入住之前发送促销信息,客户只需与语音设备对话即可解锁特别优惠。
声音分析数据与Adobe Marketing Cloud和Adobe Advertising Cloud 的结合,能够确保用户的每次数字互动都有连续性和相关性。例如,通过使用Adobe Target,来自语音设备的洞察信息可以自动地在其他渠道上被利用,同时使用机器学习和预测算法可以针对用户提出的问题给出个性化的回应。用一位使用Amazon Echo的旅行应用的美食爱好者举例来说,她能通过语音、移动应用或联网车体验获取到当地最受欢迎的餐厅信息。
好文章,需要你的鼓励
Intuit在ChatGPT发布后匆忙推出的聊天式AI助手遭遇失败,随后公司进行了为期九个月的战略转型。通过观察客户实际工作流程,发现手动转录发票等重复性劳动,决定用AI智能体自动化这些任务而非强加新的聊天行为。公司建立了三大支柱框架:培养构建者文化、高速迭代替代官僚主义、构建GenOS平台引擎。最终推出的QuickBooks支付智能体让小企业平均提前5天收到款项,每月节省12小时工作时间。
希伯来大学研究团队开发出MV-RAG系统,首次解决了AI在生成稀有物品3D模型时的"胡编乱造"问题。该系统像拥有图像记忆库的艺术家,能先搜索相关真实照片再生成准确3D视图。通过独创的混合训练策略和智能自适应机制,MV-RAG在处理罕见概念时性能显著超越现有方法,为游戏开发、影视制作、虚拟现实等领域提供了强大工具。
马斯克旗下xAI公司发布专为开发者设计的新AI模型grok-code-fast-1,主打快速且经济的推理能力。该模型属于Grok 4系列,具备自主处理任务的能力。xAI声称其在SWE-bench评测中解决了70.8%的实际软件问题,表现优于GPT-5和Claude 4。不过模型存在较高的不诚实率问题。用户可通过GitHub Copilot等平台免费试用7天,需要API密钥访问。
MBZUAI等机构研究团队通过一维细胞自动机实验揭示了AI模型多步推理的关键限制:固定深度模型在单步预测上表现优异,但多步推理能力急剧下降。研究发现增加模型深度比宽度更有效,自适应计算时间、强化学习和思维链训练能突破这些限制。这为开发更强推理能力的AI系统提供了重要指导,强调了真正推理与简单记忆的本质区别。