至顶网软件频道消息:就如移动设备从根本上改变了用户的互动方式,语音交互界面也有着同样的潜力。最新的Adobe Analytics数据显示,随着新一代产品不断地推进着创新和用户需求,语音设备的网络销量同比去年增长了39%。
7月3日,Adobe宣布推出Adobe Analytics Cloud语音分析新功能,该功能能够帮助品牌交付更为个性化的用户体验,并通过基于语音的交互界面提高品牌忠诚度。在Adobe Sensei的人工智能与机器学习功能的帮助下,通过对语音数据的深度分析,品牌既能加深对客户的了解并给出相应的建议,也能将传统的、复杂的人工分析自动化。品牌能够根据分析结果更快地采取行动,从而在交付卓越用户体验的同时,激活诸如电子邮箱和广告等其他接触点。
Adobe Analytics Cloud副总裁Bill Ingram表示:“ 正如我们在移动和视频方面看到的这样,当前科技领域中最重要的趋势之一就是用户能够越来越快地适应与内容互动的新方式。我们预计语音设备也将拥有类似的发展轨迹。Adobe已经重塑了网络、移动和用户分析,而现在,Adobe Analytics Cloud 可以使各种规模的品牌都能将语音数据的分析洞察应用于用户体验的整个旅程。”
通过Adobe Analytics Cloud,企业能够捕捉并分析所有包括Amazon Alexa、Apple Siri、 Google Assistant、Microsoft Cortana和Samsung Bixby在内的主流平台上的语音数据。这项新功能既能捕捉用户命令(如“给我播放一首歌”),也能捕捉特定的参数(如“甲壳虫乐队的歌”),解决了分析语音互动中的复杂性问题。新功能还提供了额外取值点,包括使用频率以及语音请求出现后的响应措施等。
Adobe Sensei使得团队能够专心于打造提高语音体验的客户互动,例如提供更相关的内容。举例来说,一家连锁酒店可以通过客户忠诚计划马上识别客户,并在此基础上为旅客提供奖励积分的使用建议,如购买现场演出门票或用于下一次房间预订。酒店甚至可以在最忠实客户入住之前发送促销信息,客户只需与语音设备对话即可解锁特别优惠。
声音分析数据与Adobe Marketing Cloud和Adobe Advertising Cloud 的结合,能够确保用户的每次数字互动都有连续性和相关性。例如,通过使用Adobe Target,来自语音设备的洞察信息可以自动地在其他渠道上被利用,同时使用机器学习和预测算法可以针对用户提出的问题给出个性化的回应。用一位使用Amazon Echo的旅行应用的美食爱好者举例来说,她能通过语音、移动应用或联网车体验获取到当地最受欢迎的餐厅信息。
好文章,需要你的鼓励
GitHub CEO声称AI将承担所有编程工作,但现实中AI编程工具实际上降低了程序员的生产效率。回顾编程语言发展史,从Grace Hopper的高级语言到Java等技术,每次重大突破都曾因资源限制和固有思维遭到质疑,但最终都证明了抽象化的价值。当前AI编程工具面临命名误导、过度炒作和资源限制三重困扰,但随着技术进步,AI将有助于消除思想与结果之间的障碍。
本研究针对大语言模型中普遍存在的偏见问题,提出了一套完整的数据和AI治理框架。研究发现当前主流AI模型中37.65%的输出存在偏见,其中33.7%具有中高风险。通过开发BEATS检测系统和全生命周期治理方案,为AI系统建立了从数据收集到部署监控的完整"公平性保障体系",旨在让AI技术更好地服务全人类而非延续社会偏见。
英国林肯大学正在开发一种革命性的虚拟现实环境,让非专家通过身体演示来训练AI收割机器人。这种技术已在加拿大杂货店和日本便利店试用,未来可能彻底改变工作形态。虽然能降低危险工作的风险,但也带来就业替代、工资削减等问题。许多低薪工作将被远程操控的机器人取代,影响移民模式和劳工组织。这项技术仍处于早期阶段,但将在未来几年对工作产生深远影响。
浙江大学团队开发的HarmonyGuard框架首次解决了AI网络代理的安全与效率平衡难题。该系统通过三个协作的AI代理,实现自适应安全策略更新和双目标优化,在真实测试中将策略合规率提升38%,任务完成率提升20%,为构建既高效又安全的智能助手奠定重要基础。