至顶网软件频道消息: 7月14日消息,国际权威肺结节检测大赛LUNA16的世界纪录被一家中国企业打破。阿里云ET凭借89.7%的平均召回率夺得世界冠军。此项技术突破由阿里巴巴iDST视觉计算团队完成,并已集成到阿里云ET医疗大脑中。

(LUNA16最新官网排行)
大赛要求选手对888份肺部CT样本进行分析,寻找其中的肺结节。样本共包含1186个肺结节,75%以上为小于10mm的小结节。最终,ET在7个不同误报率下发现的肺结节平均召回率达到89.7%,超出第二名0.2%。

(FROC曲线)
召回率指在样本数据中成功发现的结节占比。上图显示了ET在不同误报次数下的召回率情况。
比赛中,阿里云ET医疗大脑克服了一系列挑战:结节模态复杂,早期的结节小(小于10mm),传统的机器学习和用于自然图像的深度学习网络通常难以凑效。
阿里巴巴iDST视觉计算团队负责人华先胜介绍,与常用的两阶段检测方法不同,他们创新性地使用了单阶段方法,全程无须人工干预。机器全自动读取病人的CT序列,直接输出检测到的肺结节。
在模型结构设计上,ET针对CT切片的特性,采用多通道、异构三维卷积融合算法、有效地利用多异构模型的互补性来处理和检测在不同形态上的肺结节CT序列,提高了对不同尺度肺结节的敏感性;同时使用了带有反卷积结构的网络和多任务学习的训练策略,提高了检测的准确度。
华先胜是视觉识别和搜索领域的国际级权威学者,曾获选国际电气与电子工程协会院士(IEEE Fellow)、美国计算机协会ACM杰出科学家。

(肺部CT资料)
国家癌症中心公布的数字显示,肺癌在所有恶性肿瘤发病及死亡中均占首位。胸部CT放射影像技术,是肺癌早期筛查的有效手段。但是由于CT扫描影像数量多(一次CT扫描影像通常在200张以上),医生诊断的时间长,加上工作量大,容易疲劳,人工误差不可避免。人工智能成为新的选择。
目前,这一技术已经集成到阿里云ET医疗大脑中。ET医疗大脑可在精准医疗、医学影像、药效挖掘、新药研发、健康管理、可穿戴设备等领域承担医生助手角色,并已在肺癌、宫颈癌、甲状腺癌等领域实现突破。
在视觉计算领域的持续攻坚,是阿里巴巴"NASA"计划的一部分。不久前,该团队还打破了全球权威机器视觉算法测评平台KITTI的世界纪录,将车辆检测的准确率拉升至90.46%。这项技术后被应用到ET城市大脑中。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。