至顶网软件频道消息:围绕人工智能(简称AI)展开的炒作与关注正促使越来越多软件供应商将AI因素引入其产品发展战略。Gartner公司同时指出,这种作法亦给市场造成了巨大混乱。该公司分析称,到2020年,AI技术几乎将被引入至每一款新型软件产品及服务当中。
2016年1月,“人工智能”一词尚未能进入gartner.com网站的前百名热门搜索词汇,但到今年5月,其排名已经跃升至第七位——这亦表明Gartner客户开始高度关注AI议题,并积极思考如何将其引入自己的数字化业务发展战略。根据Gartner公司的预测,到2020年,AI将成为逾三成CIO的五大优先投资方向之一。
Gartner公司研究副总裁Jim Hare指出,“随着AI技术快速步入炒作周期,众多软件供应商亦开始追赶这场近年来兴起的淘金热。AI技术确实能够带来令人兴奋的可能性,但遗憾的是大多数供应商仅专注于简单构建并营销基于AI的产品,而非真正观察市场需求、规划潜在用途并思考如何借此提升客户的商业价值。”
所谓AI,是指那些能够在无需明确编程即可对当前情况进行观察,并独力分析出行为调整结论的系统。尽管人们普遍担心AI技术有可能最终取代人类,但实际情况是,目前的AI与机器学习技术只是在大大提升人类的既有能力。经过训练,机器能够在某些特定领域发挥出远超人类的表现; 事实上,机器与人类的结合将以往很多不可能变为了可能。
为了成功把握AI技术带来的机遇,技术供应商需要了解如何应对以下三个关键性问题:
1) 差异化的缺失导致买家陷入困扰且很难作出购买决定
越来越多的初创企业及主流厂商皆宣称将提供AI相关产品,但其中却缺少能够真正帮助买家理清需求的差异化因素。目前超过1000家应用程序与平台供应商自称为AI供应商,或者至少宣称在产品当中使用了AI技术。
根据Gartner公司的观点,这是一波类似于“环保”产品的新兴风潮——即无论实际情况如何,皆宣称或夸大其产品在环境保护方面的效果。事实上,这种广泛的AI标榜行为已经给技术投资产生了负面影响。
为了建立起用户信任,供应商应当专注于面向AI建立起量化结论,并提供相关案例研究思路。
Hare解释称,“应当以明智的方式在产品销售及营销当中使用‘AI’一词。具体来讲,应明确区分AI方案的差异化特性及其能够解决的问题。”
2) 利用经过实践验证且易于上手的机器学习能力满足最终用户需求
包括深度学习在内的AI发展成果已经获得高度肯定,但在相关价值的直接性与成熟度方面仍显得比较模糊。Gartner公司建议各供应商采取最简单的使用方法,同时配合最先进的AI技术以弥合这一对接差距。
3) 企业缺少对AI解决方案进行评估、构建与部署的能力
根据Gartner公司发布的2017年AI发展战略调查报告显示,半数以上受访者认为缺乏必要的人才与技能储备是在企业当中采用AI技术的最大挑战。
此项调查发现,企业正在积极寻求能够改善决策流程并实现业务自动化的AI解决方案。如何可能,大多数企业都倾向于购买嵌入式或者打包AI解决方案,而非尝试构建定制化解决方案。
Hare解释称,“软件供应商需要专注于为商业问题提供解决方案,而非单纯提供前沿技术成果。重点在于,供应商应说明其AI解决方案能够如何帮助企业客户解决技能短缺难题,同时带来超越内部定制化AI解决方案的价值实现速度。”
*本份调查报告于2017年4月5日至21日整理完成,涵盖Gartner研究圈各位成员——此研究圈为由Gartner负责管理的IT与商业领导者生态系统。本份研究报告共收集了83位受访者的意见。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。