至顶网软件频道消息:在竞争激烈的云计算市场保持竞争力需要的不仅仅是一个积极的功能发布计划。顶级提供商们都在不断加强基础设施,以提高运营效率,这是一个谷歌希望获得优势的领域。
这家搜索巨头今天透露其云平台的一项升级能够使企业用户能够更快地访问和分发数据。 谷歌加速了BBT,这是一种内部开发的算法,它先前已被用于其搜索主页和YouTube中。视频共享服务的吞吐量在推出后全球平均增长了4%,有些国家的增幅超过了14%。
BBR是一种拥塞控制算法,旨在防止突发流量阻碍通信。自20世纪80年代以来,这种软件已经被包括在路由器、交换机和其他网络连接的设备中,当时不成熟的信息技术使得确定何时应该限制数据流的做法比较直接。
在大多数情况下,工程师依靠丢包率作为主要指标。当路由器或交换机中的有限的内存容量被填满时,通常意味着网络上的数据太多。问题在于,从那时起技术已经有了很大的发展,而大多数拥塞控制算法仍然以同样的方式评估流量。
进入BBR。按照谷歌的说法,该算法可以通过评估与拥塞直接相关的指标来绘制比其前辈更精确的网络使用情况。特别是两个指标:连接最大可用连接带宽数量以及最近一次往返的最小延迟。
在谷歌平台的几项关键服务上实施了BBR。首先,对象存储卷和数据库实例的流量现在由该算法管理,这意味着运行其上的应用程序可以更快地获取信息。依赖Google Cloud Load Balancing和Google Cloud CDN的网站也将受益于BBR,能够为访客提供更快的加载时间。
谷歌已经向The Internet Engineering Task Force分享了该技术的规格。这一举措表明,这一搜索巨头希望BBR也能够被其他组织采用,考虑到谷歌过去在网络通信标准方面的所作所为,这算不上是太大的惊喜。
好文章,需要你的鼓励
韩国科学技术院研究团队提出"分叉-合并解码"方法,无需额外训练即可改善音视频大语言模型的多模态理解能力。通过先独立处理音频和视频(分叉阶段),再融合结果(合并阶段),该方法有效缓解了模型过度依赖单一模态的问题,在AVQA、MUSIC-AVQA和AVHBench三个基准测试中均取得显著性能提升,特别是在需要平衡音视频理解的任务上表现突出。
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。