至顶网软件频道消息:本世纪初的几次炭疽病菌袭击使公众害怕来历不明的白色粉末,但不幸的是,识别炭疽需要专家知识和时间。Korea Advanced Institute of Science and Technology(韩国科学技术高级研究所)的一个科学家团队可能已经使用人工智能找到了解决这个问题的方法,他们表示这种方法可以比人类更快地发现炭疽。
炭疽是由炭疽杆菌引起的感染,甚至会危及生命,通常是在家畜中发现。由于细菌的可用性和耐用性,美国和苏联在冷战期间都制造了炭疽的生化武器。
炭疽芽孢可以在恶劣的条件下长时间存活,这个特点使其易于运输和递送。Centers for Disease Control and Prevention(疾病控制和预防中心)表示,炭疽是生物恐怖袭击中最有可能使用的生物制剂之一。
炭疽病如果在感染的早期获得治疗,是可以被治愈的,但症状有时候在接触后几天甚至几个月内都不会出现,这就是为什么尽快识别出孢子至关重要。来自KAIST的研究团队表示,他们的人工智能不仅可以准确地发现炭疽病菌,而且还是在不到一秒的时间内完成它。
该团队在《Science Advances》杂志上发表了一篇论文,介绍了他们是如何通过将深度学习和计算机视觉与创建微生物三维扫描的极其强大的显微镜相结合以创造人工智能的。他们专门对人工智能进行了培训,以识别不同类型的炭疽杆菌,但他们希望同样的深度学习方法也可以应用于其他微生物。
虽然人工智能得到了有希望的结果,但仍然不太完美。在完成确定炭疽病菌的任务时,人工智能可以实现96%的准确度,这个团队称之为“非常准确”。作为测试,他们还试图训练同样的人工智能来识别李斯特菌,准确度达到85%。考虑到人工智能并不是为了这个目的而设计的,该团队认为这个准确度“高得令人惊讶”。
研究小组在论文中表示,他们的深入学习方法可以在打击危险病原体方面迈出意义非凡的一步。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。