至顶网软件频道消息:本世纪初的几次炭疽病菌袭击使公众害怕来历不明的白色粉末,但不幸的是,识别炭疽需要专家知识和时间。Korea Advanced Institute of Science and Technology(韩国科学技术高级研究所)的一个科学家团队可能已经使用人工智能找到了解决这个问题的方法,他们表示这种方法可以比人类更快地发现炭疽。
炭疽是由炭疽杆菌引起的感染,甚至会危及生命,通常是在家畜中发现。由于细菌的可用性和耐用性,美国和苏联在冷战期间都制造了炭疽的生化武器。
炭疽芽孢可以在恶劣的条件下长时间存活,这个特点使其易于运输和递送。Centers for Disease Control and Prevention(疾病控制和预防中心)表示,炭疽是生物恐怖袭击中最有可能使用的生物制剂之一。
炭疽病如果在感染的早期获得治疗,是可以被治愈的,但症状有时候在接触后几天甚至几个月内都不会出现,这就是为什么尽快识别出孢子至关重要。来自KAIST的研究团队表示,他们的人工智能不仅可以准确地发现炭疽病菌,而且还是在不到一秒的时间内完成它。
该团队在《Science Advances》杂志上发表了一篇论文,介绍了他们是如何通过将深度学习和计算机视觉与创建微生物三维扫描的极其强大的显微镜相结合以创造人工智能的。他们专门对人工智能进行了培训,以识别不同类型的炭疽杆菌,但他们希望同样的深度学习方法也可以应用于其他微生物。
虽然人工智能得到了有希望的结果,但仍然不太完美。在完成确定炭疽病菌的任务时,人工智能可以实现96%的准确度,这个团队称之为“非常准确”。作为测试,他们还试图训练同样的人工智能来识别李斯特菌,准确度达到85%。考虑到人工智能并不是为了这个目的而设计的,该团队认为这个准确度“高得令人惊讶”。
研究小组在论文中表示,他们的深入学习方法可以在打击危险病原体方面迈出意义非凡的一步。
好文章,需要你的鼓励
当前企业面临引入AI的机遇与挑战。管理层需要了解机器学习算法基础,包括线性回归、神经网络等核心技术。专家建议从小规模试点开始,优先选择高影响用例,投资数据治理,提升员工技能。对于影子IT现象,应将其视为机会而非问题,建立治理流程将有效工具正式化。成功的AI采用需要明确目标、跨部门协作、变革管理和持续学习社区建设。
这项由东京科学技术大学等机构联合发布的研究提出了UMoE架构,通过重新设计注意力机制,实现了注意力层和前馈网络层的专家参数共享。该方法在多个数据集上显著优于现有的MoE方法,同时保持了较低的计算开销,为大语言模型的高效扩展提供了新思路。
美国垃圾收集行业2024年创收690亿美元,近18万辆垃圾车每周运营六至七天,每日停靠超千次。设备故障成为行业最大隐性成本,每辆车年均故障费用超5000美元。AI技术通过实时监控传感器数据,能提前数周预测故障,优化零部件库存管理,减少重复维修。车队报告显示,预测性维护每辆车年节省高达2500美元,显著提升运营效率和服务可靠性。
小米团队开发的MiMo-7B模型证明了AI领域"小而精"路线的可行性。这个仅有70亿参数的模型通过创新的预训练数据处理、三阶段训练策略和强化学习优化,在数学推理和编程任务上超越了320亿参数的大模型,甚至在某些指标上击败OpenAI o1-mini。研究团队还开发了高效的训练基础设施,将训练速度提升2.29倍。该成果已完全开源,为AI民主化发展提供了新思路。