至顶网软件频道消息:
除了对于变化的怀疑,各能源企业还在斟酌新型技术到底能否真正实现。
人工智能(简称AI)已经证明了自身对于石油与天然气公司的价值,但在行业之内大量采用AI技术仍然面临着一系列障碍。Tessella公司(专门提供工程与咨询服务,旨在帮助全球各能源公司通过数据确定提升钻井平台运作及企业整体运营效率的方法)能源部门主管Ray Hall指出,“石油公司在AI技术的采用方面面临着诸多挑战。除了对于变革的天然抗拒之外,对于现有知识是否充分以及新型技术能否真正实现等仍存在疑虑。”
Hall同时表示,“我们的相当一部分客户已经在各大技术方案供应商身上投入了巨额资金。然而,尽管分析结论具有吸引力,但实际回报却令人失望。”
Hall解释称,石油企业多年以来一直在供应链平台以及炼油规划当中利用模型预测控制(简称MPC)等分析方法。
Hall指出,“他们一直在运用结构化数据处理方案以及分析技术。然而,由于这些旧有技术极少与新型分析技术相结合(例如通过机器学习提升业绩水平),因此各企业往往在这一领域缺少值得关注的进展。”
从竞争的角度来看,最重要的是石油与天然气企业由于面临着其它行业所难以想象的多方面挑战,因此在克服AI及其它新兴技术难题方面处于主动地位。
一方面,石油与天然气行业存在着长期的价格不确定性。Hall表示,“单桶原油超过100美元的日子已经一去不复返,全球需求下降与生产能力上升使得油价一路走低,同时意味着石油企业必须大幅度降低生产与炼油成本。”
这意味着应用新型技术以提高效率,能够帮助各石油与天然气企业实现显著的成本节约效果。Hall强调称,“举例来说,机器人也许能够在生产资产中发挥作用以处理钻井与开采流程。”
除此之外,这一领域还面临着从业人员老龄化问题。Hall指出,“分析领域已经就此作出大量预测,而且人们普遍意识到,未来五到十年当中将有高达40%的石油与天然气员工退休。用人力取代这部分具备丰富经验的劳动力将极具挑战性; 利用认知与机器学习解决方案增加自动化决策支持,从而降低对于经验的依赖就显得非常重要。”
最后,随着对于石油及天然气资源依赖性的降低,这一行业内的从业企业亦需要转变自身业务以成为掌握可再生能源的完整能源供应商。
Hall表示,“为了实现这一目标,各企业需要以有利可图的方式同时运营化石能源与可再生能源。这将需要建立起一套更为现代化的技术环境,从而更为有效地满足客户需求并优化能源结构。”
Tessella公司已经帮助多家石油企业利用AI技术改善业务流程。举例来说,其曾经与一家石油公司客户合作,帮助后者提升对现有钻井设备使用寿命及腐蚀水平的了解,并希望借此获得更为可观的开采收益。
Hall介绍称,“该公司拥有大量历史数据,但却缺乏充分的分析与理解。我们收集了全部油井运营数据历史记录,并利用一系列AI统计技术识别数据结构,找到历史数据与腐蚀水平之间的关联性,而后立足潜在变量以了解历史记录中的哪些因素与腐蚀情况有关。”
这项工作允许客户更为自信地基于风险作出决策,进而充分了解各类不确定性、风险与敏感性因素。Hall总结称,“这将带来巨大的反响。了解腐蚀状况对于项目实施至关重要。”
好文章,需要你的鼓励
据报道,OpenAI正与亚马逊洽谈至少100亿美元的融资。亚马逊此前已是Anthropic的最大投资者,并为其建设了110亿美元的数据中心园区。若融资达成,OpenAI将采用AWS的Trainium系列AI芯片。Trainium3采用三纳米工艺,配备八核心和32MB SRAM内存。AWS可将数千台服务器连接成拥有百万芯片的集群。报道未透露具体估值,但OpenAI最近一次二次出售估值已达5000亿美元。
伊斯法罕大学研究团队通过分析Google Play商店21款AI教育应用的用户评论,发现作业辅导类应用获得超80%正面评价,而语言学习和管理系统类应用表现较差。用户赞赏AI工具的快速响应和个性化指导,但抱怨收费过高、准确性不稳定等问题。研究建议开发者关注自适应个性化,政策制定者建立相关规范,未来发展方向为混合AI-人类模型。
各行业企业存储的数据量持续攀升,5PB以上已成常态,10PB以上也日益普遍。2026年非结构化数据管理的主题是全面增长:更多数据、更多投资、更多痛点以及更多AI安全风险。AI应用加速普及、数字化信息激增以及富媒体和传感器数据大幅增加推动了数据增长。随着AI推理应用的发展,企业将意识到非结构化数据管理对AI投资回报率的关键作用。
这项由伊利诺伊大学香槟分校等四所院校联合完成的研究,提出了名为DaSH的层次化数据选择方法。该方法突破了传统数据选择只关注单个样本的局限,通过建模数据的天然层次结构,实现了更智能高效的数据集选择。在两个公开基准测试中,DaSH相比现有方法提升了高达26.2%的准确率,同时大幅减少了所需的探索步数。