至顶网软件频道消息:麻省理工学院计算机科学与人工智能实验室的一个研究人员团队开发了一种名为Pensieve的人工智能,可以使缓慢或模糊的网络视频成为过去。
流媒体视频内容近年来一直在跨越式发展,但不幸的是它的带宽要求也呈现出跨越式的跃升。为了克服这个挑战,像YouTube或Netflix这样的视频平台使用了将视频分成更容易处理的块的算法。如果他们的系统检测到您的互联网速度减慢,下一个视频片段将以较低的分辨率播放,用这种方式努力追上播放进度。
该系统背后的思路是确保顺畅的视频播放,但有时即使是质量下降,视频仍然会暂停几秒钟,因为它试图缓冲下一个块。这是因为算法并不总是准确地预测下一个块应该使用什么分辨率。
这正是Pensieve的用武之地。麻省理工学院的研究人员使用一种奖励和惩罚系统来开发它,训练它来识别有效的缓冲技术。例如,只要成功播放完整的视频而不必重新缓存,Pensieve就可以得到奖励,如果视频质量低于某个阈值,它则可能会受到惩罚。
博士生Hongzi Mao是这篇描述了Pensieve流程和功能论文的主要作者,他表示,“通过查看过去实际的表现,它学习到不同的策略如何影响性能,它可以以更加强硬的方式改进其决策策略。”
根据研究小组的论文,Pensieve可以将视频流量比其他系统多减少10%至30%,用户将其“体验质量”评价为提高了10%至20%。
Mao表示,Pensieve具有足够的灵活性以适应不同的要求。例如,可以对其进行培训,可以以牺牲分辨率为代价保障视频连续播放,或者也可以进行相反的训练,让质量的优先级高于顺畅。
研究团队的下一个项目将是测试Pensieve在流媒体虚拟现实内容中的有效性,它需要高得多的带宽,并且对低质量的容忍度要低得多。
麻省理工学院的教授Mohammad Alizadeh(Mohammad Alizadeh)是Pensieve上这篇论文的一位合著者,他表示:“你需要的4K质量的VR可以轻松地达到每秒数百兆比特的速度,今天的网络根本无法支持”。他表示,“我们很高兴看到像Pensieve这样的系统能够为VR等技术所做的一切。这还只是第一步。”
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。