至顶网软件频道消息:麻省理工学院计算机科学与人工智能实验室的一个研究人员团队开发了一种名为Pensieve的人工智能,可以使缓慢或模糊的网络视频成为过去。
流媒体视频内容近年来一直在跨越式发展,但不幸的是它的带宽要求也呈现出跨越式的跃升。为了克服这个挑战,像YouTube或Netflix这样的视频平台使用了将视频分成更容易处理的块的算法。如果他们的系统检测到您的互联网速度减慢,下一个视频片段将以较低的分辨率播放,用这种方式努力追上播放进度。
该系统背后的思路是确保顺畅的视频播放,但有时即使是质量下降,视频仍然会暂停几秒钟,因为它试图缓冲下一个块。这是因为算法并不总是准确地预测下一个块应该使用什么分辨率。
这正是Pensieve的用武之地。麻省理工学院的研究人员使用一种奖励和惩罚系统来开发它,训练它来识别有效的缓冲技术。例如,只要成功播放完整的视频而不必重新缓存,Pensieve就可以得到奖励,如果视频质量低于某个阈值,它则可能会受到惩罚。
博士生Hongzi Mao是这篇描述了Pensieve流程和功能论文的主要作者,他表示,“通过查看过去实际的表现,它学习到不同的策略如何影响性能,它可以以更加强硬的方式改进其决策策略。”
根据研究小组的论文,Pensieve可以将视频流量比其他系统多减少10%至30%,用户将其“体验质量”评价为提高了10%至20%。
Mao表示,Pensieve具有足够的灵活性以适应不同的要求。例如,可以对其进行培训,可以以牺牲分辨率为代价保障视频连续播放,或者也可以进行相反的训练,让质量的优先级高于顺畅。
研究团队的下一个项目将是测试Pensieve在流媒体虚拟现实内容中的有效性,它需要高得多的带宽,并且对低质量的容忍度要低得多。
麻省理工学院的教授Mohammad Alizadeh(Mohammad Alizadeh)是Pensieve上这篇论文的一位合著者,他表示:“你需要的4K质量的VR可以轻松地达到每秒数百兆比特的速度,今天的网络根本无法支持”。他表示,“我们很高兴看到像Pensieve这样的系统能够为VR等技术所做的一切。这还只是第一步。”
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。