8月22日,微软再次推出其针对实时人工智能的Brainwave深度学习加速平台。而微软正在逐步曝光其将深度学习平台带入可定制芯片的计划和细节,这将使Azure成为“人工智能云”。
微软至少在2016年就曾经好几次谈过Brainwave。这一次,Brainwave的推出出现在本周的Hot Chips 2017大会上。
Brainwave由高性能分布式系统架构构成,运行在被称为现场可编程阵列(FPGA)的可定制芯片上的硬件深层神经网络引擎之上,微软今天在Research博客文章中表示,其中还包括一个用于部署在受过训练的模型编译器。
如同个月在博客文章中提到的,根据微软在2016年推出的可配置云计划,Brainwave是运行在基于FPGA硬件微服务的深度学习平台。演示提到了数据中心或互联网上的“硬件加速即服务”(Hardware Acceleration as a Service)。Brainwave分布式神经网络模型可以按照需要跨越多个FPGA。
此外,微软计划七月份在公司最近于雷德蒙德举办的Faculty Research Summit上讨论Brainwave,但是最终改变了主意。
在Hot Chips 2017大会上,微软的官员们表示,使用英特尔新的Stratix-10芯片,Brainwave在没有批处理的情况下实现了39.5兆次运算的持续性能。微软认为:Brainwave将使Azure用户能够在这种级别的性能下运行复杂的深度学习模型。
这是微软在Hot Chips大会上演示文稿中的新架构图,它显示了Brainwave的组件:
微软正在寻求在硬件微服务器上运行的Brainwave,推动受到部署在云端人工智能影响的服务边界,包括计算机视觉、自然语言处理和语音。
微软表示,他们将在2018年内通过Azure为外部开发人员提供FPGA。而微软并不是唯一一家在自己的云数据中心期待FPGA的公司,目前亚马逊和谷歌都在使用定制硅完成人工智能任务。
好文章,需要你的鼓励
OpenAI和微软宣布签署一项非约束性谅解备忘录,修订双方合作关系。随着两家公司在AI市场竞争客户并寻求新的基础设施合作伙伴,其关系日趋复杂。该协议涉及OpenAI从非营利组织向营利实体的重组计划,需要微软这一最大投资者的批准。双方表示将积极制定最终合同条款,共同致力于为所有人提供最佳AI工具。
中山大学团队针对OpenAI O1等长思考推理模型存在的"长度不和谐"问题,提出了O1-Pruner优化方法。该方法通过长度-和谐奖励机制和强化学习训练,成功将模型推理长度缩短30-40%,同时保持甚至提升准确率,显著降低了推理时间和计算成本,为高效AI推理提供了新的解决方案。
中国科技企业发布了名为R1的人形机器人,直接对标特斯拉的Optimus机器人产品。这款新型机器人代表了中国在人工智能和机器人技术领域的最新突破,展现出与国际巨头竞争的实力。R1机器人的推出标志着全球人形机器人市场竞争进一步加剧。
上海AI实验室研究团队深入调查了12种先进视觉语言模型在自动驾驶场景中的真实表现,发现这些AI系统经常在缺乏真实视觉理解的情况下生成看似合理的驾驶解释。通过DriveBench测试平台的全面评估,研究揭示了现有评估方法的重大缺陷,并为开发更可靠的AI驾驶系统提供了重要指导。