8月22日,微软再次推出其针对实时人工智能的Brainwave深度学习加速平台。而微软正在逐步曝光其将深度学习平台带入可定制芯片的计划和细节,这将使Azure成为“人工智能云”。
微软至少在2016年就曾经好几次谈过Brainwave。这一次,Brainwave的推出出现在本周的Hot Chips 2017大会上。
Brainwave由高性能分布式系统架构构成,运行在被称为现场可编程阵列(FPGA)的可定制芯片上的硬件深层神经网络引擎之上,微软今天在Research博客文章中表示,其中还包括一个用于部署在受过训练的模型编译器。
如同个月在博客文章中提到的,根据微软在2016年推出的可配置云计划,Brainwave是运行在基于FPGA硬件微服务的深度学习平台。演示提到了数据中心或互联网上的“硬件加速即服务”(Hardware Acceleration as a Service)。Brainwave分布式神经网络模型可以按照需要跨越多个FPGA。
此外,微软计划七月份在公司最近于雷德蒙德举办的Faculty Research Summit上讨论Brainwave,但是最终改变了主意。
在Hot Chips 2017大会上,微软的官员们表示,使用英特尔新的Stratix-10芯片,Brainwave在没有批处理的情况下实现了39.5兆次运算的持续性能。微软认为:Brainwave将使Azure用户能够在这种级别的性能下运行复杂的深度学习模型。
这是微软在Hot Chips大会上演示文稿中的新架构图,它显示了Brainwave的组件:
微软正在寻求在硬件微服务器上运行的Brainwave,推动受到部署在云端人工智能影响的服务边界,包括计算机视觉、自然语言处理和语音。
微软表示,他们将在2018年内通过Azure为外部开发人员提供FPGA。而微软并不是唯一一家在自己的云数据中心期待FPGA的公司,目前亚马逊和谷歌都在使用定制硅完成人工智能任务。
好文章,需要你的鼓励
开源加密初创公司ZamaSAS宣布完成5700万美元B轮融资,专注于为区块链和AI应用构建全同态加密技术以保护隐私。本轮融资由BlockchangeVentures和PanteraCapital共同领投,使公司总融资超过1.5亿美元,估值突破10亿美元。同时,Zama推出保密区块链协议公开测试网,允许开发者在以太坊上构建私密通信应用。
新加坡国立大学研究团队开发了SPIRAL框架,通过让AI与自己对弈零和游戏来提升推理能力。实验显示,仅训练AI玩简单扑克游戏就能让其数学推理能力提升8.6%,通用推理提升8.4%,且无需任何数学题目作为训练材料。研究发现游戏中的三种推理模式能成功转移到数学解题中,为AI训练提供了新思路。
英国网络铁路公司、Neos Networks和Freshwave联合启动"触达项目",旨在消除英国主要铁路干线上的信号盲区。该项目将公私合营模式相结合,预计为纳税人节省约3亿英镑。项目将部署1000公里超高速432芯光纤电缆,覆盖东海岸主线等多条线路,并在12个主要车站提供4G/5G室内连接,在57个隧道中部署4G移动连接。新网络将大幅提升铁路通信基础设施能力,支持轨道传感器和监控应用,为乘客提供更快更可靠的列车服务。
同济大学团队开发的GIGA-ToF技术通过融合多帧图像的"图结构"信息,创新性地解决了3D相机噪声问题。该技术利用图像间的不变几何关系,结合深度学习和数学优化方法,在合成数据集上实现37.9%的精度提升,并在真实设备上展现出色泛化能力,为机器人、AR和自动驾驶等领域提供更可靠的3D视觉解决方案。