至顶网软件频道消息:Google宣布在多个地区上线新的Nvidia GPU,希望以此更多用户在Google云中运行他们的机器学习和人工智能工作负载。
专用的云GPU(例如Nvidia开发的GPU)旨在加速机器学习训练和推理、地球物理数据处理、模拟、地震分析和分析建模等工作负载。
Google Compute Engine产品经理Chris Kleban和Ari Liberman在近日的一篇博客文章中表示,Google已经宣布开始测试Nvidia的P100 GPU。此外据称Nvidia的K80 GPU现在也已经出货了。他们补充说,Google将在这些GPU上提供“持续使用折扣”,以鼓励客户利用这些GPU。
说到Nvidia的Tesla P100 GPU,Google将其描述为“最先进的”处理器,允许客户以更少的实例提升吞吐量,同时节约成本。
Google还指出了云GPU与传统GPU相比的一些优点,首先就是提高了灵活性,因为这种GPU可让从中央处理器到内存再到磁盘大小和GPU配置的方方面面都可定制化,以满足客户的需求。
其次,就是云GPU可提高性能,以及降低成本,因为下图详细列举的持续使用折扣。最后,Google还强调了一个优点“云集成”,并称现在Google云堆栈的所有层面都提供了云GPU。
两位工程师这样写到:“对于基础设施来说,Compute Engine和Google Container Engine让你可以对虚拟机或者容器运行你的GPU工作负载。对于机器学习来说,Cloud Machine Learning可以选配GPU以缩短利用TensorFlow大规模训练模型的时间。”
Google还补充说,新增的GPU将在率先4个地区提供,包括美国东部、美国西部、欧洲西部和亚洲东部。
Google表示,看到了一些客户在一系列计算密集型任务中使用新的GPU,包括基因组学、计算金融和机器学习模型训练。Google表示,两种不同芯片的选择为客户提供了更多的灵活性,因为客户可以选择最合适的芯片来优化他们工作负载、同时平衡性能与定价。
好文章,需要你的鼓励
香港大学和加州大学伯克利分校的一项新研究显示,在没有人工标注数据的情况下,语言模型和视觉语言模型能够更好地泛化。这一发现挑战了大型语言模型社区的主流观点,即模型需要手工标注的训练样本。研究表明,过度依赖人工示例反而可能对模型的泛化能力产生负面影响。
OpenAI 发布了一款名为 Operator 的网络自动化工具,该工具使用名为计算机使用代理 (CUA) 的新 AI 模型来控制网络浏览器。Operator 通过视觉界面观察和交互屏幕元素,模仿人类操作方式执行任务。这项技术目前仍处于研究预览阶段,OpenAI 希望通过用户反馈来改进系统功能。
大型语言模型如 ChatGPT 展现了对话能力,但它们并不真正理解所使用的词汇。研究者们在冲绳科学技术大学构建了一个受大脑启发的人工智能模型,虽然其学习能力有限,但似乎掌握了词汇背后的概念。通过模仿婴儿学习语言的方式,研究团队将人工智能训练在一个能够与世界互动的机器人中,探索如何让人工智能实现类似人类的语言理解。