至顶网软件频道消息:Google宣布在多个地区上线新的Nvidia GPU,希望以此更多用户在Google云中运行他们的机器学习和人工智能工作负载。
专用的云GPU(例如Nvidia开发的GPU)旨在加速机器学习训练和推理、地球物理数据处理、模拟、地震分析和分析建模等工作负载。
Google Compute Engine产品经理Chris Kleban和Ari Liberman在近日的一篇博客文章中表示,Google已经宣布开始测试Nvidia的P100 GPU。此外据称Nvidia的K80 GPU现在也已经出货了。他们补充说,Google将在这些GPU上提供“持续使用折扣”,以鼓励客户利用这些GPU。
说到Nvidia的Tesla P100 GPU,Google将其描述为“最先进的”处理器,允许客户以更少的实例提升吞吐量,同时节约成本。
Google还指出了云GPU与传统GPU相比的一些优点,首先就是提高了灵活性,因为这种GPU可让从中央处理器到内存再到磁盘大小和GPU配置的方方面面都可定制化,以满足客户的需求。
其次,就是云GPU可提高性能,以及降低成本,因为下图详细列举的持续使用折扣。最后,Google还强调了一个优点“云集成”,并称现在Google云堆栈的所有层面都提供了云GPU。
两位工程师这样写到:“对于基础设施来说,Compute Engine和Google Container Engine让你可以对虚拟机或者容器运行你的GPU工作负载。对于机器学习来说,Cloud Machine Learning可以选配GPU以缩短利用TensorFlow大规模训练模型的时间。”
Google还补充说,新增的GPU将在率先4个地区提供,包括美国东部、美国西部、欧洲西部和亚洲东部。
Google表示,看到了一些客户在一系列计算密集型任务中使用新的GPU,包括基因组学、计算金融和机器学习模型训练。Google表示,两种不同芯片的选择为客户提供了更多的灵活性,因为客户可以选择最合适的芯片来优化他们工作负载、同时平衡性能与定价。
好文章,需要你的鼓励
本文探讨了云原生环境中 AI/ML 负载激增带来的变革,强调借助 Kubernetes 等新型工具实现规模、敏捷和便携优势,并以 Pizza Hut 案例说明云原生开发如何驱动业务升级。
研究预测到2030年,全球私有蜂窝网络部署将达7000多个,同比增长194%。制造业领跑市场,中立托管模式降低成本,加速5G私网应用。
Aarki 推出的 Encore 平台借助先进 AI 与深度学习,实现全流程精准用户获取和留存,同时保障隐私安全,为移动营销注入全新活力。
KDDI与DriveNets联手,通过部署分离式路由器和软件网络服务,加速开放网络构建,提升扩展性、降低成本,为AI时代数据爆发做好准备。