微软在9月25日于奥兰多举行的Ignite IT Pro大会上,将推出它所谓的“下一代Azure机器学习”。

其中包括Azure Machine Learning Workbench工具,微软称这是一个跨平台客户端,用于数据清洗和实验管理;以及Azure Machine Learning Experimentation服务和Azure Machine Learning Model Management服务。
Azure Machine Learning Workbench将对现有的微软Azure Machine Learning Studio工具进行补充,微软方面这样表示。Workbench支持在Python、PySpark和Scala中的建模,集成了Visual Studio Code和PyCharm。
在数据清洗方面,微软正在将微软Research PROSE(Program Synthesis Using Examples)研究团队做的一些工作进行商业化。微软方面证实说,Workbench中提供的数据清洗功能中,包含了一款代号为“Pendleton”的数据清洗工具。
微软私下测试Pendleton已经有一年多的时间了,这款工具面向那些为数据准备和数据清洗做设计的数据科学家。该工具可以做删除错误列,更改列中格式,处理丢失数据等。此外,还包含了一些分析工具,可以帮助数据科学家找出数据集中都包含什么。Pendleton可以读取来自SQL Server、Azure Blobs以及Data Lakes的数据,还可以读取来自本地PC文件的内容。
除了帮助清洗数据之外,微软还将提供一个将Visual Studio Cade与微软AI服务集成的扩展。有了这个Visual Studio Code for AI扩展,微软希望能够让开发者构建使用微软Cognitive Toolkit、Google TensorFlow、Theano、Keras、Chainer以及Caffe2的模型。
相信微软将继续致力于面向机器学习开发出一个完整的、类似Visual Studio的套件,也就是内部被称为的“Open Mind”。我相信未来这个新的ML Workbench将成为该套件的一部分,但目前,微软方面还没有正式的公布。
好文章,需要你的鼓励
随着AI广泛应用推动数据中心建设热潮,运营商面临可持续发展挑战。2024年底美国已建成或批准1240个数据中心,能耗激增引发争议。除能源问题外,服务器和GPU更新换代产生的电子废物同样严重。通过采用模块化可修复系统、AI驱动资产跟踪、标准化数据清理技术以及与认证ITAD合作伙伴合作,数据中心可实现循环经济模式,在确保数据安全的同时减少环境影响。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
超大规模云数据中心是数字经济的支柱,2026年将继续保持核心地位。AWS、微软、谷歌、Meta、甲骨文和阿里巴巴等主要运营商正积极扩张以满足AI和云服务需求激增,预计2026年资本支出将超过6000亿美元。然而增长受到电力供应、设备交付和当地阻力制约。截至2025年末,全球运营中的超大规模数据中心达1297个,总容量预计在12个季度内翻倍。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。