至顶网软件频道消息: 据了解,谷歌正在与劳斯莱斯公司进行一项可能对创建自主船舶非常重要的合作,以改进该工程公司系统中人工智能并了解船只在海上的情况。

根据两家公司之间的新协议,劳斯莱斯将使用谷歌的Cloud Machine Learning Engine(云机器学习引擎)进一步培训其基于人工智能的物体分类系统,用于检测、识别和跟踪船只在海上遇到的物体。
这对于自主船舶来说是至关重要的技术,因为不可能期望通过诸如雷达和自动识别系统(AIS)等传统技术来检测船舶遇到的一切。
例如,皮艇上的人不会出现在雷达上,而这样一个小型船只也不会携带设备来传送AIS数据。而如今,这些情况是由全天候监视环境的船员处理的。
Google Cloud Machine Learning Engine(谷歌云机器学习引擎)使用与神经网络相同的机器智能软件,它为谷歌的许多产品(包括图像和语音搜索)提供支持。
通过将这种技术与船上的船载摄像机结合在一起,人工智能可以提高人的监视能力,并且从长远来看,可以完全让人类从这一任务中解脱出来。对于无人驾驶的自主船只,这种技术当然是至关重要的。
劳斯莱斯船舶智能高级副总裁Karno Tenovuo在一份声明中表示:"虽然智能意识系统将有助于实现自主船舶的未来,但它们现在就可以使海上业务受益,并使船只和船员更加安全和高效。通过与Google Cloud的合作,我们可以让这些系统变得更快,这可以挽救生命。"
长期来看,劳斯莱斯和谷歌打算对无监督和多模式机器学习进行联合研究。两家公司还将测试语音识别和综合是否适用于海洋应用中的人机界面。除此之外,他们还将使用谷歌的TensorFlow等开放源代码机器智能软件库来优化船载神经网络计算的性能。
劳斯莱斯公司表示,智能意识系统将"通过加强船员对船只周围环境的了解,使船只更安全、更轻松、更有效率"。
这将通过将来自现有船舶系统(如AIS和雷达)的信息和传感器数据的融合来实现。该公司表示,来自其他来源的数据(包括全球数据库)也将发挥作用。
好文章,需要你的鼓励
Python通过PEP 810提案正式引入惰性导入功能,允许程序延迟加载导入库直到实际需要时才执行,而非在启动时全部加载。该提案由指导委员会成员Pablo Salgado于10月3日提出并于11月3日获批。新功能采用选择性加入方式,保持向后兼容性的同时解决了社区长期面临的启动时间过长问题,标准化了当前分散的自定义解决方案。
这项由斯坦福大学和特拉维夫大学合作的研究揭示了语言模型内部存在三套协同工作的信息处理机制:位置机制、词汇机制和反射机制。研究发现,当文本复杂度增加时,传统的位置机制会变得不稳定,其他两种机制会自动补偿。这一发现解释了AI在长文本处理中的表现模式,为优化模型架构和提升AI可靠性提供了重要理论基础。
Valve最新Steam硬件软件调查显示,Linux用户占比达到3.05%,较上月增长0.37个百分点,相比去年同期增长约50%。游戏网站Boiling Steam分析显示,Windows游戏在Linux平台兼容性达历史最高水平,近90%的Windows游戏能在Linux上启动运行,仅约10%游戏无法启动。
加州大学圣克鲁兹分校联合英伟达等机构开发出世界首个医学离散扩散模型MeDiM,实现了医学影像与报告的双向生成。该系统能根据临床报告生成对应影像,也能看图写报告,甚至可同时生成匹配的影像-报告对。在多项评估中表现优异,为医学教育、临床研究和辅助诊疗提供了强有力的AI工具。