科学家们已经开发出一种人工智能(AI)系统,能够成功地预测地震,这可能有助于为自然灾害做好准备并可能挽救生命。
该研究发表在《Geophysical Review Letters》杂志上,确定了一个导致地震的隐藏信号,并用这个“指纹”来训练机器学习算法预测未来的地震。英国剑桥大学和美国波士顿大学的研究人员研究了地震、前兆地震和断层之间的相互作用,希望开发出一种预测地震的方法。使用模拟实际地震的实验室系统,他们利用机器学习技术来分析来自活动的“故障”的声信号并研究它的模式。研究人员使用钢块严格模拟实际地震中起作用的物理力量,并记录发射出的地震信号和声音。然后利用机器学习来找出来自故障的声信号与失效接近程度之间的关系。
研究人员表示,机器学习算法能够识别声音中的特定模式,这些声音之前被认为只不过是噪音,而它们产生于地震发生的很久之前。他们表示,这种声音模式的特点可以用于对故障的应力进行精确估计,并估计故障之前剩余的时间,随着故障的临近,它们会变得越来越精确。剑桥大学Colin Humphreys 表示,“这是机器学习第一次被用于分析声学数据,以预测何时会发生地震,在地震真正发生的很久之前就做出预测,这样就可以提供足够的报警时间——机器学习的能力真的是不可思议的。”
研究人员表示,机器学习能够处理人工无法处理的、过于庞大的数据集,并以无偏见的方式看待数据,并因此获得新发现。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。