科学家们已经开发出一种人工智能(AI)系统,能够成功地预测地震,这可能有助于为自然灾害做好准备并可能挽救生命。
该研究发表在《Geophysical Review Letters》杂志上,确定了一个导致地震的隐藏信号,并用这个“指纹”来训练机器学习算法预测未来的地震。英国剑桥大学和美国波士顿大学的研究人员研究了地震、前兆地震和断层之间的相互作用,希望开发出一种预测地震的方法。使用模拟实际地震的实验室系统,他们利用机器学习技术来分析来自活动的“故障”的声信号并研究它的模式。研究人员使用钢块严格模拟实际地震中起作用的物理力量,并记录发射出的地震信号和声音。然后利用机器学习来找出来自故障的声信号与失效接近程度之间的关系。
研究人员表示,机器学习算法能够识别声音中的特定模式,这些声音之前被认为只不过是噪音,而它们产生于地震发生的很久之前。他们表示,这种声音模式的特点可以用于对故障的应力进行精确估计,并估计故障之前剩余的时间,随着故障的临近,它们会变得越来越精确。剑桥大学Colin Humphreys 表示,“这是机器学习第一次被用于分析声学数据,以预测何时会发生地震,在地震真正发生的很久之前就做出预测,这样就可以提供足够的报警时间——机器学习的能力真的是不可思议的。”
研究人员表示,机器学习能够处理人工无法处理的、过于庞大的数据集,并以无偏见的方式看待数据,并因此获得新发现。
好文章,需要你的鼓励
谷歌发布新的AI学术搜索工具Scholar Labs,旨在回答详细研究问题。该工具使用AI识别查询中的主要话题和关系,目前仅对部分登录用户开放。与传统学术搜索不同,Scholar Labs不依赖引用次数或期刊影响因子等传统指标来筛选研究质量,而是通过分析文档全文、发表位置、作者信息及引用频次来排序。科学界对这种忽略传统质量评估方式的新方法持谨慎态度,认为研究者仍需保持对文献质量的最终判断权。
武汉大学研究团队提出DITING网络小说翻译评估框架,首次系统评估大型语言模型在网络小说翻译方面的表现。该研究构建了六维评估体系和AgentEval多智能体评估方法,发现中国训练的模型在文化理解方面具有优势,DeepSeek-V3表现最佳。研究揭示了AI翻译在文化适应和创意表达方面的挑战,为未来发展指明方向。
Meta发布第三代SAM(分割一切模型)系列AI模型,专注于视觉智能而非语言处理。该模型擅长物体检测,能够精确识别图像和视频中的特定对象。SAM 3在海量图像视频数据集上训练,可通过点击或文本描述准确标识目标物体。Meta将其应用于Instagram编辑工具和Facebook市场功能改进。在野生动物保护方面,SAM 3与保护组织合作分析超万台摄像头捕获的动物视频,成功识别百余种物种,为生态研究提供重要技术支持。
参数实验室等机构联合发布的Dr.LLM技术,通过为大型语言模型配备智能路由器,让AI能根据问题复杂度动态选择计算路径。该系统仅用4000个训练样本和极少参数,就实现了准确率提升3.4%同时节省计算资源的突破,在多个任务上表现出色且具有强泛化能力,为AI效率优化开辟新方向。