近期实验显示,人工智能(AI)系统能够从放大的内窥镜图像中发现直肠腺瘤(一种可转化为癌症的早期肿瘤),这是因为该系统能够将实验所用的内窥镜图像与其在机器学习阶段的3万张图像逐一进行匹配对比,从而得出相应结论。
研究人员声称该系统已经对250名患者中的300多例直肠腺瘤进行了诊断分析,其中每张放大内窥镜图像的检测用时不逾一秒并且恶性肿瘤判断的准确率可达94%。
在西班牙巴塞罗那举行的United European Gastroenterology Week会议上,日本横滨昭和大学的研究领导者Yuichi Mori博士就此项实验作相关报告时表示:“该系统最大的突破在于AI可以在肠镜检查期间实现直肠息肉的实时光学活检,而不再依赖于内窥镜医师的技术。”
尽管该系统尚未获得监管部门的批准,但Mori认为其能够让许多患者避免不必要的手术。
Mori解释称:“该系统能够检测息肉是否会发生癌变,那么则可以完全切除腺瘤(癌性)息肉,并同时避免不必要的非肿瘤性息肉切除手术。”
Mori 补充道:“我们相信这些结论对于临床应用而言具有积极的指导意义,所以我们的近期目标则是获得诊断系统的监管批准。”
将AI与其他技术用于癌症的早期检测是目前全球范围内热门的探索领域。今年早些时候,英国国家卫生服务局(NHS)与英特尔公司表示其正在合作,期望可以通过应用AI技术以提高癌症诊断的正确率。另外,由沃里克大学组织图像分析实验室牵头的研究团队一直致力于建立基于人体组织细胞样本的已知肿瘤与免疫细胞的数字化资源库。
该癌症信息数据库随后将配合一定的计算程序用于自动识别该数据库内的细胞信息。据悉,该联盟最初的合作重点是肺癌。
英特尔与NHS在今年5月表示最初由谷歌公司设计的架构——包括TensorFlow——将构成该AI系统的基础并采用英特尔至强处理器。
此外,澳大利亚联邦科学与工业研究组织(CSIRO)同样在5月宣布其Data 61部门的研究人员一直在致力于开发一款软件以检测血管再生——新血管的生长,而这也是形成癌症的前期征兆。
CSIRO方面表示,Data 61与中国科学院上海应用物理研究所的研究人员分析了26只实验鼠在不同癌症生长阶段的大脑与肝脏的26张高分辨3D微CT图像并以此为基础研发了一套算法以生成准确的立体血管示意图。
Data 61的软件能够随时检测血管内细微的增生以了解患者机体对血管生成抑制剂的反馈情况。
对此,CSIRO表示:“血管变化的准确量化——特别是末端血管分支的数量——在精准诊断与治疗过程中扮演了极其重要的角色。”
然而,这已不是CSIRO首次涉入癌症诊断领域。早在12月,CSIRO发布了一套全新且准确率更高的血液测试系统——名为Colvera——以检测肠癌复发,现在美国已正式投入使用。
此套血液测试系统是由CSIRO、Flinders大学与Clinical Genomics合力开发而来,其作用机理是通过检测血液循环中肿瘤碎片DNA的癌症特异性化学信号变化从而检测肠癌是否复发。
加州的Guardant Health也在研究早期癌症检测,并且该公司在今年募集了3.6亿美元,计划在五年内完成100多万名癌症患者的肿瘤DNA排序工作,尔后将利用这些数据研发一套用于癌症诊断的血液检测系统。
南旧金山的液体活检初创企业Freenome通过结合机器学习与生物学以检测癌细胞死亡之前的无细胞DNA序列。该公司迄今为止已经募集了7120万美元,而投资公司——诸如Google Ventures等——同时也支持了Freenome的竞争对手Grail。
1月,在纳斯达克上市的DNA测序巨头Illumina的分支公司Grail在由Arch Venture Partners主导的B轮投资中募集了9亿美元,其他的投资者还包括强生旗下的创新孵化机构。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。