IBM宣布推出的这款软件平台名为IBM Cloud Private,设计旨在帮助企业利用类似公有云的能力,构建本地部署的私有云环境。这款平台还让企业能够利用流行的云原生工具在两种环境中去做应用开发。
IBM Cloud Private可以做到这一点,是因为它构建在开源应用容器编排软件Kubernetes之上,支持Docker容器和CloudFoundry应用开发平台。
Docker容器可以用于让软件从一个计算环境迁移到另一个环境的过程中可靠地运行。应用和其他依赖关系、库和其他二进制文件捆绑在一个包内,以提取出应用运行的底层基础设施中的任何差异。
有了IBM Cloud Private,企业就可以在这个平台上构建他们应用的容器化版本,然后跨各种云环境进行迁移,用于不同的用途和用例。IBM还宣布推出了其应用开发软件的新容器友好版本,包括IBM WebSphere Liberty、DB2和MQ,以帮助实现这一点。
IBM表示,能够在私有云和公有云之间轻松迁移工作负载,这一点对于很多客户来说至关重要,特别是那些所处行业有着严格法规要求的企业。例如,IBM Cloud Private对于金融服务公司来说具有一定吸引力,它可以设置一个私有云环境来确保应用数据是保存在企业内部的。然后在需要利用新的分析和机器学习工具时,迁移到公有云环境中。
分析公司Wikibon首席分析师Dave Vellante表示,IBM Cloud Private平台意味着IBM试图进入“真正的私有云”。他将这定义为内部部署的基础设施,基本上是模拟公有云的。他解释说,这个市场的增长几乎是公有云基础设施即服务的2倍,部分原因要归结于这个市场越来越多地意识到,并非所有人需要公有云提供的所有功能。
Vellante表示:“CIO们意识到,他们并不是简单地重塑他们的业务,并将业务强加到公有云端。相反,他们必须将云运营的模式带入他们的数据中。”
Vellante说,即便如此,IBM的新平台可能并不适用于所有人,因为像AWS这样的公有云提供商仍然在成本和创新方面拥有巨大优势。“我估计AWS在自动化以及支持云原生应用方面比IBM领先3-5年。”
尽管如此,IBM Cloud Private平台仍然代表着IBM在正确方向迈出的重要一步,Constellation Research首席分析师、副总裁Holger Mueller这样表示。他指出,该平台提供的混合云新能力现在是企业需要且想要的。
“对Kubernetes和CloudFoundry这样的开源项目的支持,是这款架构的关键,让企业能够跨不同云和部署带入他们的负载。”
不过IBM Cloud Private的另一个优势是,它可以帮助到那些正在从内部部署环境转移到云环境中的企业。客户之一,汽车租赁公司Hertz正在使用该平台做到这一点。
Hertz公司首席技术官Tyler Best表示:“对于像我们这样致力于减少或者消除对内部数据中心依赖的很多企业来说,私有云是必须的。对于大型企业来说,一套涵盖公有云、私有云和混合云的战略,从传统系统过渡到云的有效方法。Hertz是IBM私有云和公有云的早期客户之一,如果我们整体云产品组合缺少了私有云,那么我们是不可能实现我们的技术目标。”
IBM表示,目前IBM Cloud Private已经面向客户提供。该平台针对IBM Z、IBM Power System和IBM Hyperconverged Systems(基于Nutanix)进行了优化。此外,它还兼容来自Dell EMC、思科和联想等厂商的硬件系统。软件方面,还可集成IBM DB2、PostgreSQL和MongoDB这样的数据库服务。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。