Suncorp已经将IBM Watson引入其在线索赔系统,每年处理超过50万个交通事故索赔,以帮助该保险公司更好地了解索赔的情况并确定责任。
使用IBM Watson的Natural Language Classifier(自然语言分类器),系统可以分析客户对汽车事故的描述;然而,由于描述通常是以对话方式写出来的,IBM表示它们经常会包括口语和澳大利亚俚语,Watson需要学习这些才能正确地协助Suncorp工作。
该技术正在Suncorp的各大个人保险品牌中使用,包括AAMI、Suncorp、GIO和Bingle。
该平台依靠Watson进行责任分析,并协助快速跟踪简易索赔,如有详细描述的单方车辆事故。然而,如果客户提供的事故描述有限,或者系统在确定责任方面的可信度较低,则该索赔将转交给人类员工来帮助决策。
Suncorp保险公司的首席执行官Gary Dransfield表示,这项人工智能技术于2017年6月开始投入使用,此后,通过该过程快速追踪的客户比例增加了三倍,Watson支持索赔的提交、超额支付或放弃,并可以在五分钟内预订维修。
Dransfield星期三在一份声明中表示,“这项技术增强了我们的索赔顾问的知识和专长,提供数据驱动的洞察力,并为我们的责任决策带来了更大的信心,同时也帮助我们加快了客户的流程,同时在他们通常会感到压力很大的时候改善了他们的体验。”
“最终,通过提供创新的数字化解决方案,帮助客户更容易地完成索赔流程,从而提升了我们客户的体验。”
Dransfield表示,依靠技术做出决定将确保索赔流程精简。这种方法也将导致更一致的责任决策,Suncorp希望Watson可以根据历史索赔和行业准则建立可靠的参考点。
Suncorp使用了将近15,000个去个性化的索赔情景以及由此产生的责任确定,还有澳大利亚审慎监管局(Australian Prudential Regulatory Authority ,APRA)的指导方针训练Watson掌握关于确定机动车辆事故责任的复杂性。在试用期结束时,Watson可以准确地确定约90%的案件的责任。
Suncorp的首席执行官兼执行董事Michael Camero在公布2017财年业绩时告诉股东,该集团的税后利润为3.94亿澳元,如果不需要进一步为其核心银行平台投入资金(已经与Oracle签署了合作协议),则税后利润将会更高。
在2014年5月份宣布该公司将致力于投入约2.7亿澳元来改变其核心银行系统之后,该银行之前的目标是在2018财年通过技术优化计划获得1.7亿澳元的收益。
Cameron解释说,Suncorp决定将一小批产品留在旧系统上运行,而不是冒险推出新平台。
Cameron表示,“归根结底,客户体验是非常重要的;我们不想陷入中断的境地,所以我们所做的一切是等待同一款软件新版本的发布,其中包含了我们想要的各种各样的东西,而不是在内部自己建立这些东西。”
“这实际上会让我们付出的代价更小一些,从客户的角度来看,这将会降低运营风险,对于我们来说,这意味着在一段时间内运行两个系统。这样虽然不太理想,但是我们已经思考了很长时间,并进行了认真的考虑。”
好文章,需要你的鼓励
全新搜索方式出现,字节发布宽度优先搜索基准WideSearch,垫底的竟是DeepSeek
阿里巴巴团队推出DeepPHY,这是首个专门评估AI视觉语言模型物理推理能力的综合平台。通过六个不同难度的物理环境测试,研究发现即使最先进的AI模型在物理推理任务中表现也远低于人类,成功率普遍不足30%。更关键的是,AI模型虽能准确描述物理现象,却无法将描述性知识转化为有效控制行为,暴露了当前AI技术在动态物理环境中的根本缺陷。
GitHub CEO声称AI将承担所有编程工作,但现实中AI编程工具实际上降低了程序员的生产效率。回顾编程语言发展史,从Grace Hopper的高级语言到Java等技术,每次重大突破都曾因资源限制和固有思维遭到质疑,但最终都证明了抽象化的价值。当前AI编程工具面临命名误导、过度炒作和资源限制三重困扰,但随着技术进步,AI将有助于消除思想与结果之间的障碍。
AgiBot团队联合新加坡国立大学等机构开发出Genie Envisioner机器人操作统一平台,首次将视频生成技术应用于机器人控制。该系统通过100万个操作视频学习,让机器人能够预测行动结果并制定策略,在多个复杂任务上表现优异,仅需1小时数据即可适应新平台,为通用机器人智能开辟全新路径。