Suncorp已经将IBM Watson引入其在线索赔系统,每年处理超过50万个交通事故索赔,以帮助该保险公司更好地了解索赔的情况并确定责任。
使用IBM Watson的Natural Language Classifier(自然语言分类器),系统可以分析客户对汽车事故的描述;然而,由于描述通常是以对话方式写出来的,IBM表示它们经常会包括口语和澳大利亚俚语,Watson需要学习这些才能正确地协助Suncorp工作。
该技术正在Suncorp的各大个人保险品牌中使用,包括AAMI、Suncorp、GIO和Bingle。
该平台依靠Watson进行责任分析,并协助快速跟踪简易索赔,如有详细描述的单方车辆事故。然而,如果客户提供的事故描述有限,或者系统在确定责任方面的可信度较低,则该索赔将转交给人类员工来帮助决策。
Suncorp保险公司的首席执行官Gary Dransfield表示,这项人工智能技术于2017年6月开始投入使用,此后,通过该过程快速追踪的客户比例增加了三倍,Watson支持索赔的提交、超额支付或放弃,并可以在五分钟内预订维修。
Dransfield星期三在一份声明中表示,“这项技术增强了我们的索赔顾问的知识和专长,提供数据驱动的洞察力,并为我们的责任决策带来了更大的信心,同时也帮助我们加快了客户的流程,同时在他们通常会感到压力很大的时候改善了他们的体验。”
“最终,通过提供创新的数字化解决方案,帮助客户更容易地完成索赔流程,从而提升了我们客户的体验。”
Dransfield表示,依靠技术做出决定将确保索赔流程精简。这种方法也将导致更一致的责任决策,Suncorp希望Watson可以根据历史索赔和行业准则建立可靠的参考点。
Suncorp使用了将近15,000个去个性化的索赔情景以及由此产生的责任确定,还有澳大利亚审慎监管局(Australian Prudential Regulatory Authority ,APRA)的指导方针训练Watson掌握关于确定机动车辆事故责任的复杂性。在试用期结束时,Watson可以准确地确定约90%的案件的责任。
Suncorp的首席执行官兼执行董事Michael Camero在公布2017财年业绩时告诉股东,该集团的税后利润为3.94亿澳元,如果不需要进一步为其核心银行平台投入资金(已经与Oracle签署了合作协议),则税后利润将会更高。
在2014年5月份宣布该公司将致力于投入约2.7亿澳元来改变其核心银行系统之后,该银行之前的目标是在2018财年通过技术优化计划获得1.7亿澳元的收益。
Cameron解释说,Suncorp决定将一小批产品留在旧系统上运行,而不是冒险推出新平台。
Cameron表示,“归根结底,客户体验是非常重要的;我们不想陷入中断的境地,所以我们所做的一切是等待同一款软件新版本的发布,其中包含了我们想要的各种各样的东西,而不是在内部自己建立这些东西。”
“这实际上会让我们付出的代价更小一些,从客户的角度来看,这将会降低运营风险,对于我们来说,这意味着在一段时间内运行两个系统。这样虽然不太理想,但是我们已经思考了很长时间,并进行了认真的考虑。”
好文章,需要你的鼓励
随着AI广泛应用推动数据中心建设热潮,运营商面临可持续发展挑战。2024年底美国已建成或批准1240个数据中心,能耗激增引发争议。除能源问题外,服务器和GPU更新换代产生的电子废物同样严重。通过采用模块化可修复系统、AI驱动资产跟踪、标准化数据清理技术以及与认证ITAD合作伙伴合作,数据中心可实现循环经济模式,在确保数据安全的同时减少环境影响。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
超大规模云数据中心是数字经济的支柱,2026年将继续保持核心地位。AWS、微软、谷歌、Meta、甲骨文和阿里巴巴等主要运营商正积极扩张以满足AI和云服务需求激增,预计2026年资本支出将超过6000亿美元。然而增长受到电力供应、设备交付和当地阻力制约。截至2025年末,全球运营中的超大规模数据中心达1297个,总容量预计在12个季度内翻倍。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。