Suncorp已经将IBM Watson引入其在线索赔系统,每年处理超过50万个交通事故索赔,以帮助该保险公司更好地了解索赔的情况并确定责任。
使用IBM Watson的Natural Language Classifier(自然语言分类器),系统可以分析客户对汽车事故的描述;然而,由于描述通常是以对话方式写出来的,IBM表示它们经常会包括口语和澳大利亚俚语,Watson需要学习这些才能正确地协助Suncorp工作。
该技术正在Suncorp的各大个人保险品牌中使用,包括AAMI、Suncorp、GIO和Bingle。
该平台依靠Watson进行责任分析,并协助快速跟踪简易索赔,如有详细描述的单方车辆事故。然而,如果客户提供的事故描述有限,或者系统在确定责任方面的可信度较低,则该索赔将转交给人类员工来帮助决策。
Suncorp保险公司的首席执行官Gary Dransfield表示,这项人工智能技术于2017年6月开始投入使用,此后,通过该过程快速追踪的客户比例增加了三倍,Watson支持索赔的提交、超额支付或放弃,并可以在五分钟内预订维修。
Dransfield星期三在一份声明中表示,“这项技术增强了我们的索赔顾问的知识和专长,提供数据驱动的洞察力,并为我们的责任决策带来了更大的信心,同时也帮助我们加快了客户的流程,同时在他们通常会感到压力很大的时候改善了他们的体验。”
“最终,通过提供创新的数字化解决方案,帮助客户更容易地完成索赔流程,从而提升了我们客户的体验。”
Dransfield表示,依靠技术做出决定将确保索赔流程精简。这种方法也将导致更一致的责任决策,Suncorp希望Watson可以根据历史索赔和行业准则建立可靠的参考点。
Suncorp使用了将近15,000个去个性化的索赔情景以及由此产生的责任确定,还有澳大利亚审慎监管局(Australian Prudential Regulatory Authority ,APRA)的指导方针训练Watson掌握关于确定机动车辆事故责任的复杂性。在试用期结束时,Watson可以准确地确定约90%的案件的责任。
Suncorp的首席执行官兼执行董事Michael Camero在公布2017财年业绩时告诉股东,该集团的税后利润为3.94亿澳元,如果不需要进一步为其核心银行平台投入资金(已经与Oracle签署了合作协议),则税后利润将会更高。
在2014年5月份宣布该公司将致力于投入约2.7亿澳元来改变其核心银行系统之后,该银行之前的目标是在2018财年通过技术优化计划获得1.7亿澳元的收益。
Cameron解释说,Suncorp决定将一小批产品留在旧系统上运行,而不是冒险推出新平台。
Cameron表示,“归根结底,客户体验是非常重要的;我们不想陷入中断的境地,所以我们所做的一切是等待同一款软件新版本的发布,其中包含了我们想要的各种各样的东西,而不是在内部自己建立这些东西。”
“这实际上会让我们付出的代价更小一些,从客户的角度来看,这将会降低运营风险,对于我们来说,这意味着在一段时间内运行两个系统。这样虽然不太理想,但是我们已经思考了很长时间,并进行了认真的考虑。”
好文章,需要你的鼓励
Anthropic发布了面向成本敏感用户的Claude Haiku 4.5大语言模型,定价为每百万输入令牌1美元,输出令牌5美元,比旗舰版Sonnet 4.5便宜三倍。该模型采用混合推理架构,可根据需求调整计算资源,支持多模态输入最多20万令牌。在八项基准测试中,性能仅比Sonnet 4.5低不到10%,但在编程和数学任务上超越了前代Sonnet 4。模型响应速度比Sonnet 4快两倍以上,适用于客服聊天机器人等低延迟应用场景。
AWorld团队开发的Recon-Act系统采用"侦察-行动"双团队协作模式,通过工具中心的自我进化机制实现智能浏览器操作。系统在VisualWebArena测试中达到36.48%成功率,超越现有自动化方案。其创新性在于将信息收集与任务执行分离,通过对比成功失败案例自动生成专用工具,为未来智能浏览器助手发展提供了新思路。
英国初创公司Nscale将为微软建设四个AI数据中心,总计部署约20万个GPU,合同价值高达240亿美元。首个数据中心将于明年在葡萄牙开建,配备1.26万个GPU。德州数据中心规模最大,将部署10.4万个GPU,容量从240兆瓦扩展至1.2吉瓦。所有设施将采用英伟达最新Blackwell Ultra显卡。
中科院团队提出QuantVGGT技术,首次解决大规模3D重建AI模型的部署难题。通过双重平滑精细量化和噪声过滤多样化采样两项核心技术,成功将12亿参数的VGGT模型压缩75%体积、提升2.5倍速度,同时保持98%原始性能。实验结果显示该方法在相机位置估计和点云地图生成任务上均显著优于现有量化技术,为3D AI技术的产业化普及提供了重要突破。