至顶网软件频道消息:
IBM正试图让自己的Watson Data Platform的数据访问更容易,以便让那些基于人工智能的应用使用该平台。
IBM表示,Watson中增加新的数据编目和精炼功能,将让开发者和数据科学家更容易为AI应用准备数据和分析数据。新功能让用户可以更容易跨公有云和私有云连接和分享数据,这也是IBM扩展其数据治理产品的举措之一。
IBM Watson Data Platform是一款基于云的服务,集成了各种工具帮助数据科学家和其他人从他们的数据中获得智能,访问AI、分析和机器学习服务。
这次公布的Data Catalog和Data Refinery工具可以帮助将不同格式、不同位置(例如云或者本地环境中)的数据聚合到一起,用户可以访问到这些数据。此外这些工具还可用于清理这些数据,让基于AI的应用可以使用这些数据。其他特点还包括能够利用元数据标记和执行数据治理策略,确保数据的安全性。
IBM还宣布提供Analytics Engine,可将数据存储与其中保存的信息分离开,把数据更快速地输送给AI应用。IBM表示,这些新功能将有助于打消AI应用开发者面临的主要障碍之一,也就是让保存在不同位置的复杂数据变得有意义。
对于那些正在应对数据量快速增长的企业来说,数据治理已经成为一个日益严重的问题。IBM正在通过扩展Unified Governance Platform来解决这个需求,该平台让企业组织能够更容易找到数据和分类数据。InfoSphere Information Server现在提供了对Unified Governance Catalog的单一视图,被用于定义通用数据描述。此外,IBM还更新了用于表和元数据服务的Datastage Designer工具,增加识别和建议使用模式的方法。
新推出的Analytical Master Data Management工具提供的自助式服务可用于动态可视化、探索和关联数据源。一个名为域“同意管理”主要针对需要符合将在明年5月生效的欧盟“通用数据保护条例”(GDPR)的企业。用户可以查看和管理在GDPR要求中定义的各种许可过程。
IBM还升级了Industry Data Models,主要是考虑到了GDPR条例。这些预先设计的业务和技术数据模型可用于围绕已经识别的数据加快商业智能应用的开发。这次增加了对GDPR域专有条款的支持,此外还有行业专用词汇索引,以填补监管机构和垂直行业之间在语言上的差距。
IBM Watson Data Platform总经理Derek Schoettle表示:“人工智能的关键是从强大的数据基础开始的,这将流入数据的量和速度挑战转变为一种资产。对于那些利用人工智能创新和竞争的企业来说,他们需要一种方法来掌握和组织各个来源的数据,将这种复杂数据索引作为每个决策和项目的支柱。”
好文章,需要你的鼓励
Turner & Townsend发布的2025年数据中心建设成本指数报告显示,AI工作负载激增正推动高密度液冷数据中心需求。四分之三的受访者已在从事AI数据中心项目,47%预计AI数据中心将在两年内占据一半以上工作负载。预计到2027年,AI优化设施可能占全球数据中心市场28%。53%受访者认为液冷技术将主导未来高密度项目。电力可用性成为开发商面临的首要约束,48%的受访者认为电网连接延迟是主要障碍。
商汤科技研究团队开发的InteractiveOmni是一个突破性的全模态AI助手,能够同时处理图像、视频、音频和文字,并具备强大的多轮对话记忆能力。该模型采用端到端架构,实现了从多模态输入到语音输出的统一处理,在多项基准测试中表现优异。特别值得关注的是,4B参数版本就能达到接近7B模型的性能,且已开源供研究使用。
亚马逊云服务宣布投资500亿美元,专门为美国政府构建AI高性能计算基础设施。该项目将新增1.3千兆瓦算力,扩大政府机构对AWS AI服务的访问,包括Amazon SageMaker、Amazon Bedrock和Claude聊天机器人等。预计2026年开工建设。AWS CEO表示此举将彻底改变联邦机构利用超级计算的方式,消除技术障碍,助力美国在AI时代保持领先地位。
腾讯混元团队联合北航、清华推出Honey-Data-15M,这是一个包含1500万高质量图像-问答对的开源数据集,通过创新的双层思考链策略让AI学会深度推理。基于此训练的Bee-8B模型在复杂推理任务上表现卓越,证明了专注数据质量能让开源AI达到商业级水平。