至顶网软件频道消息:
IBM正试图让自己的Watson Data Platform的数据访问更容易,以便让那些基于人工智能的应用使用该平台。
IBM表示,Watson中增加新的数据编目和精炼功能,将让开发者和数据科学家更容易为AI应用准备数据和分析数据。新功能让用户可以更容易跨公有云和私有云连接和分享数据,这也是IBM扩展其数据治理产品的举措之一。
IBM Watson Data Platform是一款基于云的服务,集成了各种工具帮助数据科学家和其他人从他们的数据中获得智能,访问AI、分析和机器学习服务。
这次公布的Data Catalog和Data Refinery工具可以帮助将不同格式、不同位置(例如云或者本地环境中)的数据聚合到一起,用户可以访问到这些数据。此外这些工具还可用于清理这些数据,让基于AI的应用可以使用这些数据。其他特点还包括能够利用元数据标记和执行数据治理策略,确保数据的安全性。
IBM还宣布提供Analytics Engine,可将数据存储与其中保存的信息分离开,把数据更快速地输送给AI应用。IBM表示,这些新功能将有助于打消AI应用开发者面临的主要障碍之一,也就是让保存在不同位置的复杂数据变得有意义。
对于那些正在应对数据量快速增长的企业来说,数据治理已经成为一个日益严重的问题。IBM正在通过扩展Unified Governance Platform来解决这个需求,该平台让企业组织能够更容易找到数据和分类数据。InfoSphere Information Server现在提供了对Unified Governance Catalog的单一视图,被用于定义通用数据描述。此外,IBM还更新了用于表和元数据服务的Datastage Designer工具,增加识别和建议使用模式的方法。
新推出的Analytical Master Data Management工具提供的自助式服务可用于动态可视化、探索和关联数据源。一个名为域“同意管理”主要针对需要符合将在明年5月生效的欧盟“通用数据保护条例”(GDPR)的企业。用户可以查看和管理在GDPR要求中定义的各种许可过程。
IBM还升级了Industry Data Models,主要是考虑到了GDPR条例。这些预先设计的业务和技术数据模型可用于围绕已经识别的数据加快商业智能应用的开发。这次增加了对GDPR域专有条款的支持,此外还有行业专用词汇索引,以填补监管机构和垂直行业之间在语言上的差距。
IBM Watson Data Platform总经理Derek Schoettle表示:“人工智能的关键是从强大的数据基础开始的,这将流入数据的量和速度挑战转变为一种资产。对于那些利用人工智能创新和竞争的企业来说,他们需要一种方法来掌握和组织各个来源的数据,将这种复杂数据索引作为每个决策和项目的支柱。”
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。