今天IBM公布了一款新软件,称其更容易训练机器学习模型,以便做出决策和从大数据中提取洞察。
这款名为Deep Learning Impact的软件工具,帮助用户开发的AI模型可使用流行的开源、深度学习框架,例如TensorFlow和Caffee,而且从12月开始这款工具将被添加到IBM的Spectrum Conductor软件中。
除了公布新软件之外,IBM还提到了基于Power9处理器的新系统,IBM在今年SC17大会上进行了展示。
IBM表示,这些系统是针对AI工作负载量身定制的,因为这些系统可以在Power9 CPU和硬件加速器(例如GPU和FPGA)之间加速传输数据,通常这些加速器是用与训练和运行机器学习模型的。
Power9系统还将在Power9处理器以及系统中其他加速器之间的高带宽连接。IBM表示,Power9将成为首个片上支持最新高速连接器(包括Nvidia下一代NVLink、OpenCAPI 3.0和PCIe 4.0)的商用平台。
IBM公司副总裁、认知系统开发研究员Brad McCredie表示:“我们看你到片上微处理器——处理片上集成——的时代正在终结,摩尔定律也将消失。”
“Power9让我们有机会尝试新的架构设计,通过跨系统堆栈实现数据带宽最大化,从而推动计算打破当前的限制。”
“Power9的基石是一个内部的信息高速公路,将处理进行分离,强化高级加速器来消化和分析海量数据集。”
下一代Nvidia NVLink和OpenCAPI互连将让附加GPU的性能明显高于x86系统中普遍采用的PCIe 3.0连接器所能实现的性能,而PCIe 4.0互连的速度将是PCIe 3.0的2倍。
IBM称,这个新的Power9系统最大的亮点,就是为美国能源部构建的Summit和Sierra超级计算机,也采用了Nvidia最新基于Volta的Tesla GPU加速器。Summit超级计算机预计性能将提升到是DOE Titan超级计算机的5到10倍。
IBM的重点是为可以有效处理多种类型芯片之间处理的系统奠定基础,这也是与Google、Mellanox、Nvidia和其他OpenPower Foundation成员共同努力的部分结果。
今年早些时候,IBM高级副总裁Bob Picciano谈到了IBM将如何计划打造能够更好地解决与使用AI分析非结构化数据相关工作负载的系统。
好文章,需要你的鼓励
Fractal AI Research实验室开发了Fathom-DeepResearch智能搜索系统,该系统由两个4B参数模型组成,能够进行20多轮深度网络搜索并生成结构化报告。研究团队创新了DUETQA数据集、RAPO训练方法和认知行为奖励机制,解决了AI搜索中的浅层化、重复性和缺乏综合能力等问题,在多项基准测试中显著超越现有开源系统,为AI助手向专业研究工具转变奠定了基础。
快手科技与清华大学合作发现当前AI语言模型训练中存在严重的权重分配不平衡问题,提出了非对称重要性采样策略优化(ASPO)方法。该方法通过翻转正面样本的重要性权重,让模型把更多注意力放在需要改进的部分而非已经表现良好的部分,显著提升了数学推理和编程任务的性能,并改善了训练稳定性。