今天IBM公布了一款新软件,称其更容易训练机器学习模型,以便做出决策和从大数据中提取洞察。
这款名为Deep Learning Impact的软件工具,帮助用户开发的AI模型可使用流行的开源、深度学习框架,例如TensorFlow和Caffee,而且从12月开始这款工具将被添加到IBM的Spectrum Conductor软件中。
除了公布新软件之外,IBM还提到了基于Power9处理器的新系统,IBM在今年SC17大会上进行了展示。
IBM表示,这些系统是针对AI工作负载量身定制的,因为这些系统可以在Power9 CPU和硬件加速器(例如GPU和FPGA)之间加速传输数据,通常这些加速器是用与训练和运行机器学习模型的。
Power9系统还将在Power9处理器以及系统中其他加速器之间的高带宽连接。IBM表示,Power9将成为首个片上支持最新高速连接器(包括Nvidia下一代NVLink、OpenCAPI 3.0和PCIe 4.0)的商用平台。
IBM公司副总裁、认知系统开发研究员Brad McCredie表示:“我们看你到片上微处理器——处理片上集成——的时代正在终结,摩尔定律也将消失。”
“Power9让我们有机会尝试新的架构设计,通过跨系统堆栈实现数据带宽最大化,从而推动计算打破当前的限制。”
“Power9的基石是一个内部的信息高速公路,将处理进行分离,强化高级加速器来消化和分析海量数据集。”
下一代Nvidia NVLink和OpenCAPI互连将让附加GPU的性能明显高于x86系统中普遍采用的PCIe 3.0连接器所能实现的性能,而PCIe 4.0互连的速度将是PCIe 3.0的2倍。
IBM称,这个新的Power9系统最大的亮点,就是为美国能源部构建的Summit和Sierra超级计算机,也采用了Nvidia最新基于Volta的Tesla GPU加速器。Summit超级计算机预计性能将提升到是DOE Titan超级计算机的5到10倍。
IBM的重点是为可以有效处理多种类型芯片之间处理的系统奠定基础,这也是与Google、Mellanox、Nvidia和其他OpenPower Foundation成员共同努力的部分结果。
今年早些时候,IBM高级副总裁Bob Picciano谈到了IBM将如何计划打造能够更好地解决与使用AI分析非结构化数据相关工作负载的系统。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。