今天IBM公布了一款新软件,称其更容易训练机器学习模型,以便做出决策和从大数据中提取洞察。
这款名为Deep Learning Impact的软件工具,帮助用户开发的AI模型可使用流行的开源、深度学习框架,例如TensorFlow和Caffee,而且从12月开始这款工具将被添加到IBM的Spectrum Conductor软件中。
除了公布新软件之外,IBM还提到了基于Power9处理器的新系统,IBM在今年SC17大会上进行了展示。
IBM表示,这些系统是针对AI工作负载量身定制的,因为这些系统可以在Power9 CPU和硬件加速器(例如GPU和FPGA)之间加速传输数据,通常这些加速器是用与训练和运行机器学习模型的。
Power9系统还将在Power9处理器以及系统中其他加速器之间的高带宽连接。IBM表示,Power9将成为首个片上支持最新高速连接器(包括Nvidia下一代NVLink、OpenCAPI 3.0和PCIe 4.0)的商用平台。
IBM公司副总裁、认知系统开发研究员Brad McCredie表示:“我们看你到片上微处理器——处理片上集成——的时代正在终结,摩尔定律也将消失。”
“Power9让我们有机会尝试新的架构设计,通过跨系统堆栈实现数据带宽最大化,从而推动计算打破当前的限制。”
“Power9的基石是一个内部的信息高速公路,将处理进行分离,强化高级加速器来消化和分析海量数据集。”
下一代Nvidia NVLink和OpenCAPI互连将让附加GPU的性能明显高于x86系统中普遍采用的PCIe 3.0连接器所能实现的性能,而PCIe 4.0互连的速度将是PCIe 3.0的2倍。
IBM称,这个新的Power9系统最大的亮点,就是为美国能源部构建的Summit和Sierra超级计算机,也采用了Nvidia最新基于Volta的Tesla GPU加速器。Summit超级计算机预计性能将提升到是DOE Titan超级计算机的5到10倍。
IBM的重点是为可以有效处理多种类型芯片之间处理的系统奠定基础,这也是与Google、Mellanox、Nvidia和其他OpenPower Foundation成员共同努力的部分结果。
今年早些时候,IBM高级副总裁Bob Picciano谈到了IBM将如何计划打造能够更好地解决与使用AI分析非结构化数据相关工作负载的系统。
好文章,需要你的鼓励
韩国科学技术院研究团队提出"分叉-合并解码"方法,无需额外训练即可改善音视频大语言模型的多模态理解能力。通过先独立处理音频和视频(分叉阶段),再融合结果(合并阶段),该方法有效缓解了模型过度依赖单一模态的问题,在AVQA、MUSIC-AVQA和AVHBench三个基准测试中均取得显著性能提升,特别是在需要平衡音视频理解的任务上表现突出。
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。