至顶网软件频道消息: 大家认为人工智能是否可以优化食物系统?从精准耕作到个性化营养,在农业、食品生产和食品消费方面有许多潜在的技术应用。但是,技术性能、用户的接受程度以及该技术的实际应用仍然构成挑战。Chiara Cecchini调查了这一细分领域的主要挑战和机遇,探索如何利用人造大脑的使用来确保健康生活并促进幸福。
斯坦福大学发起的"人工智能百年研究"表明,人工神经网络现在可以通过大数据集和大规模计算(深度学习)进行训练,从而推动数据驱动型解决方案的发展,进而改善决策。此外,人工神经网络是受生物脑神经网络启发而来的计算系统。人类的选择是基于有限的知识,这种做法增加了风险而且效率低下。人工智能提供了机会,可以针对复杂任务模仿人类的认知能力,通过这些人工神经元网络,有可能能够降低风险并增强积极的成果。
农业、健康和营养早就已经在政治和社会两个层面上都占据了不同的领域。现在,人们普遍认识到,在全球范围内,最重要的任务之一是提供在数量和质量上都充足的食物,以可持续的方式养育不断增长的世界人口。世界经济论坛(World Economic Forum)认为,为了做到这一点,迫切需要促进"更为智慧的农业增长。"
安装在农场、田野或者运输途中的传感器生成的数据提供了前所未有丰富的信息。因此,将人工智能应用于农业有可能会优化并提高产量,改善农业规划,优化资源并极大地防止浪费。据估计,到2020年,将有超过7500万台农用连接设备投入使用,而到2050年,每个农场预计平均每天会产生410万个数据点。
在养殖业中有几个例子:从精准除草和采摘到疾病识别,人工智能有可能为耕作系统开拓出新的情景。
康奈尔大学的一组研究人员最近发表了一项研究,解释他们如何建立并训练一个神经网络,该神经网络能够以98%的准确率鉴别木薯叶片上的褐斑病。CAMP3部署和管理无线传感器网络,该网络被用于收集田间图像,并在早期自动发现病虫害。
为了进行精准的除草和采摘,Abundant Robotics最近筹集了1000万美元用于建造一个能够采摘合适苹果的机器人。另一个例子是Vision Robotics,这家圣地亚哥的公司开发的机器人能够在果园中移动并采摘橘子。这些类型的解决方案也许可以为农民节省数百万美元的劳动力成本和水果损坏成本,每年减少13亿吨的粮食损失(约折合7500亿美元)。
人工智能也有积极影响土壤健康的潜力。每一汤匙的土壤中含有数以百万计的微生物,为植物形成一个生态系统,Trace Genomics等公司能够从土壤中提取DNA,分析其微生物群落,并基于人工智能提供建议,以最大限度地提高土壤的健康程度和作物产量。
全球粮食安全是人类面临的最紧迫的问题之一,农业生产对实现这一目标至关重要。植物和动物疾病、环境退化和气候变化都是影响全球人口的迫切问题。现在那些从事人工智能和机器学习的人都希望能够塑造一场新的绿色革命:我们越早开始研究它,我们所有的人就会从中获得越大的价值。
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。
这项研究由中国科学技术大学的研究团队提出了Pro3D-Editor,一种新型3D编辑框架,通过"渐进式视角"范式解决了现有3D编辑方法中的视角不一致问题。传统方法要么随机选择视角迭代编辑,要么同时编辑多个固定视角,都忽视了不同编辑任务对应不同的"编辑显著性视角"。Pro3D-Editor包含三个核心模块:主视角采样器自动选择最适合编辑的视角,关键视角渲染器通过创新的MoVE-LoRA技术将编辑信息传递到其他视角,全视角精修器修复并优化最终3D模型。实验证明该方法在编辑质量和准确性方面显著优于现有技术。
这项研究提出了ComposeAnything,一个无需重新训练的框架,可显著提升AI图像生成模型处理复杂空间关系的能力。该技术由INRIA、巴黎高师和CNRS的研究团队开发,通过三个创新步骤工作:首先利用大型语言模型创建包含深度信息的2.5D语义布局,然后生成粗略的场景合成图作为先验指导,最后通过物体先验强化和空间控制去噪引导扩散过程。在T2I-CompBench和NSR-1K基准测试中,该方法远超现有技术,特别是在处理复杂空间关系和多物体场景时表现卓越,为AI辅助创意设计开辟新可能。