至顶网软件频道消息: DeepMind将自己大量机器学习资源投入到医疗领域:近日公布了一项新的研究合作,以利用人工智能来对抗乳腺癌。
作为这次合作的一部分,DeepMind将与伦敦帝国理工学院癌症研究中心领导的一个健康研究机构进行合作,继续DeepMind与英国国家卫生服务部门此前的工作。
该计划的目标是探索改善乳腺癌检测的新方法,将机器学习运用于乳腺X射线摄影,这是一种常用于检查乳房健康的X射线技术。DeepMind希望创建一种机器学习模型,能够快速准确地检查乳房X射线照片中的癌症征兆,帮助医生及早发现疾病,从而尽快开始治疗。
英国癌症研究中心研究与创新高级总监Iain Foulkes表示:“利用人工智能的力量,可以帮助我们解决乳腺癌研究中一些最大的挑战,包括提高检测的准确性。有大量癌症是在晚期检测出来的,这时候已经难以治疗了。这也是为什么该中心正在构建能力、构建新的合作伙伴关系、以及支持社区进行早期检测研究,以便更多的人能够幸免于难。”
除了与医生和医疗机构合作之外,DeepMind还将与母公司Alphabet下Google公司的AI医疗研究团队合作,后者已经做了一些在利用机器学习检测乳腺癌的研究。DeepMind在声明中表示,这次合作是由新合作伙伴提出的,他们提到希望能够得到来自DeepMind和Google的研究人员“这样才能利用两个团队的人工智能专业技能以及Google的超级计算基础设施”。
今年早些时候DeepMind在英国遭受了对患者医疗信息的“不当”访问,导致该公司成立独立调查小组以对这项实践进行评估。对于这次公布的合作,DeepMind表示“将致力于以最大的关心和尊重来对待这个项目的数据”。
DeepMind在声明中表示:“正如标准做法那样,研究中使用的数据仍然由我们的合作伙伴完全控制,并以世界级安全和加密标准进行保存。此外,所有医疗信息进行了彻底的去身份处理,在研究人员进行分析之前任何可以识别出个人的信息都已经被移除了。”
DeepMind、Google和NHS的研究协议目前设置为12个月,但是如果合作伙伴同意的话也可以延长。与其他健康项目一样,DeepMind将在同行可查看的期刊上发表所有研究成果。
好文章,需要你的鼓励
阿里团队开发的FantasyPortrait系统突破了传统人像动画的局限,通过隐式表情表示和掩码交叉注意力机制,实现了高质量的单人和多人肖像动画生成,特别在跨身份表情迁移方面表现出色,为视频制作和虚拟交流等领域带来新的技术可能性。
复旦大学研究团队开发的AnyI2V系统实现了从任意条件图像到视频的生成突破。该系统无需训练即可处理多种输入模态(包括3D网格、点云等),支持用户自定义运动轨迹控制,并通过创新的特征注入和语义掩模技术实现了高质量视频生成,为视频创作领域带来了革命性的便利工具。
Akamai坚持“简而未减、网络先行、拥抱开源”的独特定位。凭借“鱼与熊掌兼得”的特色,过去几年,Akamai在电商、流媒体、广告科技、SaaS、金融科技等行业客户中获得了广泛认可。
斯坦福大学研究团队开发了KL-tracing方法,能让视频生成AI模型在无需专门训练的情况下进行精确物体追踪。该方法通过在视频帧中添加微小追踪标记,利用模型的物理理解能力预测物体运动轨迹。在真实场景测试中,相比传统方法性能提升16.6%,展现了大型生成模型在计算机视觉任务中的潜力。