至顶网软件频道消息: AWS表示,计划开设一个新的机器学习实验室名为“ML Solutions Lab”,将让专家与客户一起共同致力于构建新的基于人工智能的技术。此外,Amazon还表示,将会向Amazon Rekognition添加新的功能,一个基于深度学习的图像识别平台,包括实时人脸识别以及识别图像中的文字。
这些公告突出了Amazon对人工智能的重视,这可以让AWS和Amazon的零售业务受益。近几个月来,Amazon已经在该领域发布了一系列公告。例如,Amazon在10月曾表示,将会与微软公司合作开发一个名为Gluon的深度学习接口,这是一个用于培训人工智能模型的框架。
Amazon决定开设ML Solutions Lab也是很重要的,因为此举标志着更大力度地推进到业务咨询领域,这是向最大型的企业用户提供更多IT服务时候所需要的。
Amazon人工智能副总裁Swami Sivasubramanian表示:“我们不能等着开发者通过Amazon ML Solutions Lab开始他们采用机器学习的旅程。Amazon ML Solutions Lab把最优秀的机器学习科学家所具备的专业知识与Amazon内部对客户有着深度业务理解的实践者相结合,帮助客户加速机器学习,开始把机器学习融入他们企业组织内的工作中。 ”
Amazon表示,目前包括华盛顿邮报、杨森制药公司和世界银行集团在内的多加客户已经在与Amazon ML Solutions Lab合作了。
至于Rekognition,这个新的升级项展示了Amazon如何快速将人工智能用于打造可以售卖给客户、基于人工智能的新产品。
对平台具体的更新包括:检测和识别图像中的文本、对数百万人脸的实时面部识别、以及在照片中检测多达100张人脸。Amazon还表示,Rekognition在面部识别方面的准确度提升了10%。
Rekognition平台的客户包括知名的基于图像的社交网络平台Pinterest。
Pinterest首席技术官Vanja Josifovski表示:“作为一个以视觉为驱动的平台,Pinterest很大程度上依赖于图像的速度和质量,但是这些图像背后的文字同样重要,因为这些问题提供了上下文并让2亿多活跃用户能够对图像进行操作。通过使用Amazon Rekognition Text in Image,我们可以更好地、大规模地提取图像中丰富的文本内容,在Amazon S3中保存的数百万Pins都可实现较低的延迟。”
好文章,需要你的鼓励
科技亿万富翁拉里·埃里森资助的研究团队将向英国牛津大学投资1.18亿英镑,用于将AI技术应用于疫苗研究。牛津疫苗研究小组将领导这一项目,研究人体免疫系统对严重细菌感染和抗生素耐药性的反应。该项目由曾主导新冠疫苗试验的安德鲁·波拉德教授领导,计划采用人体挑战模型,让志愿者在受控条件下接触细菌,然后运用现代免疫学和AI工具来精确识别预测保护效果的免疫反应,以开发针对致命疾病的创新疫苗。
伦斯勒理工学院研究团队通过网络科学方法首次系统揭示了大语言模型的内部"认知架构"。研究发现AI模型采用类似鸟类大脑的弱定位架构,模块间通过分布式协作而非专业化分工来处理认知任务。这一发现颠覆了基于功能模块优化的传统思路,指出应充分利用网络级协作来提升AI性能。
据报道,ChatGPT开发商OpenAI计划在印度建设一座耗电量超过1吉瓦的数据中心,目前正寻找当地合作伙伴。该设施预计可容纳至少5.9万片英伟达B200芯片。这可能是OpenAI全球数据中心计划的一部分,旨在为国际用户提供更低延迟服务。OpenAI CEO奥特曼将于下月访问印度,公司还计划年底前在新德里开设办事处。
腾讯和清华研究团队首次从数学理论角度解释了为什么AI需要外部工具。研究证明纯文本AI存在"隐形枷锁",无法突破预训练的能力边界,而工具集成能打破这种限制,让AI获得全新的问题解决策略。团队还开发了ASPO算法,解决了训练AI更早使用工具的技术难题。实验显示配备工具的AI在数学问题上全面超越纯文本版本,展现出三种新奇认知模式,为构建更强大的AI系统提供理论指导。