至顶网软件频道消息: AWS表示,计划开设一个新的机器学习实验室名为“ML Solutions Lab”,将让专家与客户一起共同致力于构建新的基于人工智能的技术。此外,Amazon还表示,将会向Amazon Rekognition添加新的功能,一个基于深度学习的图像识别平台,包括实时人脸识别以及识别图像中的文字。
这些公告突出了Amazon对人工智能的重视,这可以让AWS和Amazon的零售业务受益。近几个月来,Amazon已经在该领域发布了一系列公告。例如,Amazon在10月曾表示,将会与微软公司合作开发一个名为Gluon的深度学习接口,这是一个用于培训人工智能模型的框架。
Amazon决定开设ML Solutions Lab也是很重要的,因为此举标志着更大力度地推进到业务咨询领域,这是向最大型的企业用户提供更多IT服务时候所需要的。
Amazon人工智能副总裁Swami Sivasubramanian表示:“我们不能等着开发者通过Amazon ML Solutions Lab开始他们采用机器学习的旅程。Amazon ML Solutions Lab把最优秀的机器学习科学家所具备的专业知识与Amazon内部对客户有着深度业务理解的实践者相结合,帮助客户加速机器学习,开始把机器学习融入他们企业组织内的工作中。 ”
Amazon表示,目前包括华盛顿邮报、杨森制药公司和世界银行集团在内的多加客户已经在与Amazon ML Solutions Lab合作了。
至于Rekognition,这个新的升级项展示了Amazon如何快速将人工智能用于打造可以售卖给客户、基于人工智能的新产品。
对平台具体的更新包括:检测和识别图像中的文本、对数百万人脸的实时面部识别、以及在照片中检测多达100张人脸。Amazon还表示,Rekognition在面部识别方面的准确度提升了10%。
Rekognition平台的客户包括知名的基于图像的社交网络平台Pinterest。
Pinterest首席技术官Vanja Josifovski表示:“作为一个以视觉为驱动的平台,Pinterest很大程度上依赖于图像的速度和质量,但是这些图像背后的文字同样重要,因为这些问题提供了上下文并让2亿多活跃用户能够对图像进行操作。通过使用Amazon Rekognition Text in Image,我们可以更好地、大规模地提取图像中丰富的文本内容,在Amazon S3中保存的数百万Pins都可实现较低的延迟。”
好文章,需要你的鼓励
这项由浙江大学与阿里巴巴通义实验室联合开展的研究,通过创新的半在线强化学习方法,显著提升了AI界面助手在多步骤任务中的表现。UI-S1-7B模型在多个基准测试中创造了7B参数规模的新纪录,为GUI自动化代理的发展开辟了新的技术路径。
阿里巴巴联合浙江大学开发的OmniThink框架让AI学会像人类一样慢思考写作。通过信息树和概念池的双重架构,系统能够动态检索信息、持续反思,突破了传统AI写作内容浅薄重复的局限。实验显示该方法在文章质量各维度均显著超越现有最强基线,知识密度提升明显,为长文本生成研究开辟了新方向。
新加坡国立大学研究人员开发出名为AiSee的可穿戴辅助设备,利用Meta的Llama模型帮助视障人士"看见"周围世界。该设备采用耳机形态,配备摄像头作为AI伴侣处理视觉信息。通过集成大语言模型,设备从简单物体识别升级为对话助手,用户可进行追问。设备运行代理AI框架,使用量化技术将Llama模型压缩至10-30亿参数在安卓设备上高效运行,支持离线处理敏感文档,保护用户隐私。
腾讯混元3D 2.0是一个革命性的3D生成系统,能够从单张图片生成高质量的带纹理3D模型。该系统包含形状生成模块Hunyuan3D-DiT和纹理合成模块Hunyuan3D-Paint,采用创新的重要性采样和多视角一致性技术,在多项评估指标上超越现有技术,并提供用户友好的制作平台。作为开源项目,它将大大降低3D内容创作门槛,推动3D技术的普及应用。