至顶网软件频道消息: OpenAI研究人员日前发布了一个工具库,该工具库可以帮助研究人员在GPU上建立更快、更高效、占内存更少的神经网络。
神经网络由一些连接节点层组成。神经网络的结构处决于数据和应用程序,各种结构的变化可以很大,但所有的模型都受到GPU运行方式的限制。
一种使用较小的计算达到训练较大模型的方法是使用稀疏矩阵。如果一个矩阵里大多数元素都是零,该矩阵即为稀疏矩阵。矩阵的空白元素(零)可以被压缩,在做矩阵乘法时可以跳过这些元素,而且,稀疏矩阵占用的GPU内存较少。
OpenAI的研究科学家Durk Kingma在向记者解释时表示,矩阵运算时的计算成本与矩阵中非零项的数量成正比。
使用稀疏矩阵就意味着节省下来的额外计算可用于构建横向更宽或纵向更深的网络,从而可以更高效地训练和执行推导运算,比率可高达十倍。
通过增加稀疏性后,密集神经网络(左)可以变成更宽(中)或更深(右)神经网络。 (图片来源:OpenAI)
Kingma表示,Nvidia其实并不支持稀疏模型。OpenAI的一个团队因此决定为广泛的研究社区开发核心程序(一种编译在硬件上运行的软件的小程序),核心程序是针对构建块状稀疏网络优化过的。
Elon Musk的人工智能研究部门的研究人员在内部利用OpenAI的核心程序训练长期短期记忆神经网络,这些神经网络被用于亚马逊和IMDB上评论文章的情绪分析。
研究人员在提交准备发表的文章(https://blog.openai.com/unsupervised-sentiment-neuron/)里表示,“我们的稀疏模型改善了文档级IMDB数据集截止目前为止的最好结果,由原来的5.91%错误率提高到5.01%。该改善结果与我们之前的结果比表现出了其潜力,原来的方法只有在处理短句层次文档时才能达到最佳效果。”
该核心程序是用CUDA编写的,OpenAI目前只为其开发了一个TensorFlow包装器,使用别的框架的研究人员需编写自己的包装器。还有,该核心程序仅支持Nvidia GPU。
Open AI的技术人员Scott Gray告诉记者,“该核心程序肯定可以扩展到其他支持小块矩阵乘法的架构,包括我知道的大多数架构,不过不包括Google的TPU2。“
Kingma说,尽管这些结果很有潜力,但“由于核心程序是新开发的,我们并不是明确知道核心程序在什么时候以及什么地方可以帮助神经网络架构。在实验中,我们提供了一些有助于在模型里添加稀疏性的例子。我们鼓励社区进一步探索这个空间。“
Gray做了补充,他表示,Nvidia已经获悉核心程序方面的工作,他们正在等代码发布后进一步提供更广泛的支持。
OpenAI的工作与Taco类似。Taco是由麻省理工学院的研究人员创建的一个软件,可自动生成处理稀疏矩阵的代码。
好文章,需要你的鼓励
OpenAI在最新博客中首次承认,其AI安全防护在长时间对话中可能失效。该公司指出,相比短对话,长对话中的安全训练机制可能会退化,用户更容易通过改变措辞或分散话题来绕过检测。这一问题不仅影响OpenAI,也是所有大语言模型面临的技术挑战。目前OpenAI正在研究加强长对话中的安全防护措施。
北航团队推出VoxHammer技术,实现3D模型的精确局部编辑,如同3D版Photoshop。该方法直接在3D空间操作,通过逆向追踪和特征替换确保编辑精度,在保持未修改区域完全一致的同时实现高质量局部修改。研究还创建了Edit3D-Bench评估数据集,为3D编辑领域建立新标准,展现出在游戏开发、影视制作等领域的巨大应用潜力。
谷歌宣布计划到2026年底在弗吉尼亚州投资90亿美元,重点发展云计算和AI基础设施。投资包括在里士满南部切斯特菲尔德县建设新数据中心,扩建现有设施,并为当地居民提供教育和职业发展项目。弗吉尼亚州长表示这项投资是对该州AI经济领导地位的有力认可。此次投资是谷歌北美扩张战略的一部分。
宾夕法尼亚大学研究团队开发出PIXIE系统,这是首个能够仅通过视觉就快速准确预测三维物体完整物理属性的AI系统。该技术将传统需要数小时的物理参数预测缩短至2秒,准确率提升高达4.39倍,并能零样本泛化到真实场景。研究团队还构建了包含1624个标注物体的PIXIEVERSE数据集,为相关技术发展奠定了重要基础,在游戏开发、机器人控制等领域具有广阔应用前景。