清晨6点多的北京,天还未亮。在百度大厦的外围,就有十辆无人车开始了“夜跑”。
而指挥这一波操作的,是远在大洋彼岸的拉斯维加斯百度世界大会美国场现场。
百度集团总裁兼COO陆奇说,这就AI领域的“中国速度”。
▲ 百度集团总裁兼COO陆奇
发布迄今最强的Apollo 2.0版本
在11月16日北京举办的百度世界大会上,百度就宣布了要在2018年与金龙客车合作量产无人客车,在2020年与奇瑞合作实现无人驾驶汽车的量产。而这背后搭载的都是百度的自动驾驶平台Apollo。
Apollo平台于去年4月19日首次面世,是一套完整的软硬件和服务系统,包括车辆平台、硬件平台、软件平台、云端数据服务等。今天,百度在拉斯维加斯重点推出了Apollo的2.0版本,并且号称是迄今为止的“最强版本”。
Apollo 2.0首次开放了安全服务,进一步强化了其自定位、感知、规划决策和云端仿真等能力。能够让自动驾驶汽车实现简单城市道路自动驾驶,点亮了包括云端服务、软件平台、参考硬件平台以及参考车辆平台在内的四大模块。
而此前的1.0和1.5版本,则只是分别可以让车辆实现封闭场景的循迹形式和单一车道的自动驾驶功能。
据百度Apollo平台研发负责人王京傲介绍,接下来Apollo将全面支持包括NVIDIA、Intel、NXP、Renesas在内的四大主流计算平台,推出更低成本的传感器方案,支持小型巴士、SUV、卡车等更多的参考车型,以及提供全球更大范围的高精地图服务。
▲ 百度Apollo平台研发负责人王京傲
自7月份开放以来,Apollo开放平台受到超过7000个开发者的支持,生态合作伙伴规模突破了90家。目前,已经拥有16.5万行代码,并且保持着每季度新增6.5万行代码的快速迭代效率。
而正是得益于大量开发者的代码贡献和数据的反馈,2.0版本的自定位、感知、规划决策和云端仿真等能力才不断得以增强。例如其定位能力在峡谷与隧道等不良环境下仍已经能够实现5—10厘米的精度;感知模块最远探测距离达到了300英尺(约91.4米)等等。
在发布会现场,王京傲还展示了可量产的自动驾驶产品Apollo Pilot与奇瑞、金龙以及综合运输服务商Access LA等合作伙伴的落地应用成果,涵盖了乘用车、公共巴士和辅助客运服务等多种场景。
此外,在国际化战略上,Apollo将首个海外项目落地于新加坡,与智能出行公司AMI成立合资公司,在新加坡和东南亚推广无人驾驶技术的商业化,并参与当地的智能交通建设,服务于其城市管理和公众生活。
为了推广和普及自动驾驶技术,培养相关人才,百度还宣布与硅谷前沿技术在线学习平台优达学城(Udacity)联合推出面向全球的Apollo自动驾驶在线课程。同时,百度总裁张亚勤还在会上表示,百度将在全球成立多个Apollo实验室,以百度位于北、上、深、硅谷、西雅图的技术中心为起点,继续在全球范围内招募自动驾驶人才。
▲ 百度总裁张亚勤
当然,自动驾驶并不是百度AI的全部。
在会上,百度还发布了三款搭载百度语音开放平台DuerOS 2.0的智能硬件——小鱼在家VS1智能视频音箱、Sengled生迪智能音箱灯和popIn Aladdin智能投影吸顶灯。
百度度秘事业部总经理景鲲在会上介绍,DuerOS开放平台发布6个月以来,已经新增了130余家合作伙伴、落地硬件解决方案超过20个、每月新增5款以上搭载DuerOS的设备。
▲ 百度度秘事业部总经理景鲲
目前,DuerOS已与华为、Vivo、小米、高通、ARM、TCL、海尔、美的、哈曼、小天才等众多知名企业达成合作,将DuerOS的对话能力广泛应用到手机、电视、音箱等智能家居、智能穿戴和车载场景中。
百度是最早开始做AI研发的公司之一,现如今,推动百度核心业务发展的也正是AI的能力。无论是自动驾驶、语音平台,其背后都是百度真真切切的AI技术能力的支持。
如陆奇所说,“今后,百度将是一家AI公司。”而我们也的确希望,在人工智能这样一个狂潮中,能够看到一个“不一样的百度”。
好文章,需要你的鼓励
杜克大学研究团队建立了首个专门针对Web智能体攻击检测的综合评估标准WAInjectBench。研究发现,现有攻击手段极其多样化,从图片像素篡改到隐藏弹窗无所不包。虽然检测方法对明显恶意指令有中等效果,但对隐蔽攻击几乎无能为力。研究构建了包含近千个恶意样本的测试数据库,评估了十二种检测方法,揭示了文本和图像检测的互补性。这项研究为Web智能体安全防护指明了方向,提醒我们在享受AI便利时必须保持安全意识。
生成式AI的兴起让谷歌和Meta两大科技巨头受益匪浅。谷歌母公司Alphabet第三季度广告收入同比增长12%达742亿美元,云服务收入增长33%至151.5亿美元,季度总收入首次突破千亿美元大关。Meta第三季度收入512.5亿美元,同比增长26%。两家公司都将大幅增加AI基础设施投资,Meta预计2025年资本支出提升至700亿美元,Alphabet预计达910-930亿美元。
加州大学圣地亚哥分校研究团队系统研究了AI智能体多回合强化学习训练方法,通过环境、策略、奖励三大支柱的协同设计,提出了完整的训练方案。研究在文本游戏、虚拟家庭和软件工程等多个场景验证了方法有效性,发现简单环境训练能迁移到复杂任务,监督学习初始化能显著减少样本需求,密集奖励能改善学习效果。这为训练能处理复杂多步骤任务的AI智能体提供了实用指南。