至顶网软件频道消息: 我们处在的时代中一再被告知人工智能和自动化将会破坏人类的工作。与此同时,大部分西方世界却面对极低的生产力水平而努力挣扎。
斯坦福大学最近的一项研究表明,人工智能投资难以实现更高的生产力,可能要归结为公司获取数据的经济模型。这表明,我们免费输送给Google、Facebook数据但是却没有得到回报,这往往会导致质量较差的数据,因此难以从中获得有用的价值。我们都希望实现数据变现的愿望,但目前来说,很难看到有哪些因素可以鼓励我们在Facebook上分享更准确的数据。
埃森哲最近的一篇文章提供了另一种说法。文章称,越来越多的角色将需要我们与人工智能有效地展开合作,而不是被人工智能取代。
与以前的工作一样,报告预测将出现一系列新的工作,包括与基于人工智能的工具密切合作。他们将这些角色分为三种主要类型:
• 培训师 - 帮助电脑学习,变得更聪明。
• 解释者 - 解释计算机产生的结果,以提高决策的透明度和问责性。
• 维持者 - 确保人工智能系统保持原来的目的,不会陷入不道德的境地。
采取系统化的方法
该报告还称,企业组织需要采取系统性的方法来确保人与机器之间的交互是顺利的。"原则是,在让员工准备必要的技能之前,把焦点从工作岗位转移到工作本质上。"
他们主张通过三个主要步骤来做到这一点:
1、评估任务和技能:企业组织通常可以很好地理解内部的工作角色,但是他们很少理解这些工作中的各项任务和所需技能。这是至关重要的,因为未来需要执行新的任务来充分发挥人工智能的作用。
2、创建新的角色:随着人工智能的发展,它将让员工去承担更高价值的工作。这将需要新的角色,更多的是洞察力和策略,而不是单一的技能、重复性的工作。工作也有可能会变得更加专业化,因为我们想要掌控大数据,这项能力让我们坑购为客户提供个性化的服务。
3、将技能映射到新角色:最后一步是将企业组织所需的新技能,与上一步中创建的新定义角色映射到组织拥有的技能。有时这个技能差距可以通过短期承包商来解决,有时则需要向员工提供培训计划。
"然而,越来越清楚的是,随着人们和智能机器以全新的方式展开合作,企业领导者将不得不一次又一次的重新调整自己的员工队伍。第二次、同时也是真正变革性的转变可能不到十年时间就会发生。同时,企业领导者必须更加直接地发挥重要作用,充分利用人机协作带来的机遇,为未来全新的发展机遇和市场动荡创造跳板。"该报告总结说。
新的技能
记者之前写过关于帮助人们发展与自主工具共同进步所需的技能时存在的固有挑战,在新平台试图接近那些最受益的群体时,雇主也在减少培训支出。
埃森哲呼吁各企业组织重新强调培训的重要性,以弥补差距,只有3%的公司管理人员计划增加培训支出,尽管其中大约一半的受访者面临技能短缺的问题。
他们主张在先前进行的"技能审计"基础上确定特定技能的优先级,然后针对不同的技能水平和不同层次的人员进行有针对性的培训。
公司对工作的未来以及人工智能对人类工作的影响大体上持乐观态度。虽然这项技术将从根本上改变价值创造的本质,但是当人们接受培训,与机器配合高效工作的时候,它将会发挥最大作用。事实上,这篇论文称,在交谈中大多数员工都非常期待有新的人工智能驱动工具来帮助他们更有效地完成工作。
好文章,需要你的鼓励
NVIDIA研究团队开发出名为Lyra的AI系统,能够仅凭单张照片生成完整3D场景,用户可自由切换观察角度。该技术采用创新的"自蒸馏"学习方法,让视频生成模型指导3D重建模块工作。系统还支持动态4D场景生成,在多项测试中表现优异。这项技术将大大降低3D内容创作门槛,为游戏开发、电影制作、VR/AR应用等领域带来重大突破。
生物技术公司SpotitEarly开发了一种独特的居家癌症筛查方法,结合训练有素的比格犬嗅觉能力和AI技术分析人体呼气样本。该公司研究显示,18只训练犬能以94%的准确率检测出早期癌症。用户只需在家收集呼气样本并寄送至实验室,由训练犬识别癌症特异性气味,AI平台验证犬类行为。公司计划明年通过医师网络推出筛查套件,单项癌症检测约250美元。
谷歌DeepMind团队创新性地让Gemini 2.5模型在无需训练的情况下学会理解卫星多光谱图像。他们将复杂的12波段卫星数据转换为6张可理解的伪彩色图像,配以详细文字说明,使通用AI模型能够准确分析遥感数据。在多个基准测试中超越现有模型,为遥感领域AI应用开辟了全新道路。