尽管微软一直在不断努力,让领先的软件和服务供应商进驻Azure,但该公司自己的LinkedIn部门仍在建立独立的数据中心和云基础架构之上。
当微软最初收购LinkedIn时,许多人都认为LinkedIn将会尽早转移到微软的Azure云中。但是这种情况并没有出现。近期似乎也没有任何这方面的计划。
从某些方面说,LinkedIn不运行在Azure上并不奇怪。微软的官员们多年来一直承诺说Office 365有朝一日会迁移到Azure中,可是到现在仍未兑现。Xbox Live也没有运行在Azure上。相反,微软似乎专注于以Azure服务的形式引入这些新功能,而将现有遗留下来的Office 365 和Xbox Live留在原地(运行在它们自己的数据中心里)。
但是从其他方面来看,LinkedIn的数据中心独立性确实令人惊讶,尤其是考虑到微软在过去几年中一直致力于让尽可能多的ISV(独立软件供应商)和服务提供商将Azure作为他们的“首选云”。微软已经巩固(并大肆宣传)了与Adobe、SAP、Box等公司的合作伙伴关系,并以此作为Azure的重要证明。
当微软在2017年初任命LinkedIn首席技术官Kevin Scott为首席技术官时,我们就曾想过这是否表明了微软高层领导将LinkedIn和微软云端联合起来的意图,但答案似乎是否定的。
2017年4月,一位LinkedIn高管公开表示,LinkedIn计划在可预见的将来继续管理和控制自己的基础架构。2018年2月2日,LinkedIn工程副总裁Sonu Nayyyar发表了一篇题为《从LinkedIn数据中心之旅中吸取的经验教训》,他在文章中也指出,LinkedIn将继续运营自己独立的数据中心。
在2012年,Nayyar解释说,LinkedIn意识到需要改变其数据中心战略。他指出:“不依赖于第三方数据中心供应商,我们需要运营和管理自己的数据中心。这是一个关键的决定,为我们创造了一个新的原则:‘控制自己的命运’。”
LinkedIn决定采用分散的方式,从多个数据中心站点提供应用程序。这家当时还是独立的公司在2013至2015年期间,每年都建设一个新的数据中心。它也选择了超大规模的建设和发展,最终导致了LinkedIn的“Altair项目”,它的数据中心结构“可以水平缩放而不改变网络的基本架构或在升级过程中中断其核心。” 2016年,LinkedIn开设了使用Altair项目设计的俄勒冈州数据中心(本文开篇的照片就是该数据中心)。
展望未来,LinkedIn计划继续建设自己的数据中心。Nayyar提到了LinkedIn的Open19项目,该项目旨在使数据中心硬件更具互操作性和高效性。(Open19项目听起来几乎与微软的 “Olympus项目”和开放计算项目(Open Compute Project)内容一模一样。)Nayaar在博客文章中表示,LinkedIn还在研究OpenFabric和软件驱动的基础架构。
当微软在2016年收购LinkedIn时,微软的官员们表示,他们打算基本上采取不干涉的方式来管理其最大的一起收购资产。他们似乎真的说到做到了。
在过去的一年中,微软和LinkedIn已经实现了首席执行官萨提亚.纳德拉(Satya Nadella)为该公司设定的几个集成里程碑,并且正在努力将他们各自的数据图结合在一起。就在本周,微软开始推出其承诺的Resume Assistant,它为Windows上的Office 365用户将Word 2016和LinkedIn进行了集成。
但是,将微软Azure和LinkedIn云平台进行整合似乎仍然不在待办事项列表之中。很好奇的是,它究竟是否还会在待办事项列表中出现。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。