谷歌今天宣布向其公有云平台上增加ensor Processing Units,这是一款专门为人工智能工作负载提供动力的内部设计的芯片系列。
一个TPU(如图所示)由四个专用集成电路组成,配有64GB的“超高带宽”内存。这一组合单元可以提供高达180 teraflops的性能。今年晚些时候,谷歌计划增加一个集群选项,让云客户将多个TPU聚合成一个“Pod”,速度达到petaflop的范围(是teraflop的1000倍)。
在今天的公告中谷歌并没有分享更多的性能细节。不过,去年谷歌的两位顶级工程师写的一篇博客文章显示,当时内部使用的Pod包括64个TPU,总吞吐为11.5 petaflops。相比之下,世界上功能最强大的超级计算机可以达到93 petaflops,但值得注意的是,谷歌很可能没有使用相同的基准测试方法来测量TPU的速度。
无论哪种方式,这些芯片都是Google云平台的一个重要补充。当谷歌于去年4月首次向全世界展示TPU规格的时候,它透露该芯片至少可以运行某些机器学习工作负载,比现有的芯片快15至30倍。这就包括特别适合用于机器学习模型的GPU。GPU的主要制造商包括Nvidia和AMD公司,这两家公司仍然是当今大多数项目的首选。
因此,谷歌的云客户应该能够更快速地培训和运行他们的人工智能软件。谷歌表示,一个TPU可用于在一天之内实施主流ResNet-50图像分类模型,达到可接受的精确度水平。
谷歌已经创建了几个预先优化的神经网络包,让客户可以将其运行在TPU上,其中包括一个ResNet-50版本,以及用于机器翻译、语言建模和识别图像内物体的模型。企业客户也可以使用谷歌的开源TensorFlow机器学习引擎创建自己的人工智能工作负载。
喜欢使用传统图形卡进行人工智能项目的客户,今天也看到了一项新的功能。谷歌为其Kubernetes Engine服务添加了GPU支持,以允许将机器学习模型打包到软件容器中。后一种技术提供了一个轻量级抽象层,使开发人员能够更轻松地推出更新并跨环境迁移应用。
这个新的TPU价格为每小时每单元6.50美元,而通过Kubernetes Engine租赁的GPU将按谷歌现有的每种支持芯片型号收费。
这种芯片对于各种人工智能任务、特别是对于一些计算机工作负载而言的就绪情况,仍然不明确。Moor Insights&Strategy总裁兼首席分析师Patrick Moorhead表示:“TPU是一个很好的试水方式,但并一定适合于运行生产工作负载。GPU是进行训练的最佳方式。锁定到TPU,意味着被GCP和TensorFlow锁定。”
而且谷歌也不是唯一追求自主开发人工智能芯片的公司。芯片巨头英特尔公司一直在推销其最新用于人工智能工作负载的CPU,以及称为FPGA的定制芯片。
据The Information报道称,亚马逊公司正在开发自己的人工智能芯片,该芯片可以帮助其Echo智能音箱和其他使用其Alexa数字助理的硬件在设备上执行更多处理任务,以便它可以比调用云的响应速度更快。
好文章,需要你的鼓励
Anthropic发布SCONE-bench智能合约漏洞利用基准测试,评估AI代理发现和利用区块链智能合约缺陷的能力。研究显示Claude Opus 4.5等模型可从漏洞中获得460万美元收益。测试2849个合约仅需3476美元成本,发现两个零日漏洞并创造3694美元利润。研究表明AI代理利用安全漏洞的能力快速提升,每1.3个月翻倍增长,强调需要主动采用AI防御技术应对AI攻击威胁。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Spotify年度总结功能回归,在去年AI播客功能遭遇批评后,今年重新专注于用户数据深度分析。新版本引入近十项新功能,包括首个实时多人互动体验"Wrapped Party",最多可邀请9位好友比较听歌数据。此外还新增热门歌曲播放次数显示、互动歌曲测验、听歌年龄分析和听歌俱乐部等功能,让年度总结更具互动性和个性化体验。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。