谷歌今天宣布向其公有云平台上增加ensor Processing Units,这是一款专门为人工智能工作负载提供动力的内部设计的芯片系列。
一个TPU(如图所示)由四个专用集成电路组成,配有64GB的“超高带宽”内存。这一组合单元可以提供高达180 teraflops的性能。今年晚些时候,谷歌计划增加一个集群选项,让云客户将多个TPU聚合成一个“Pod”,速度达到petaflop的范围(是teraflop的1000倍)。
在今天的公告中谷歌并没有分享更多的性能细节。不过,去年谷歌的两位顶级工程师写的一篇博客文章显示,当时内部使用的Pod包括64个TPU,总吞吐为11.5 petaflops。相比之下,世界上功能最强大的超级计算机可以达到93 petaflops,但值得注意的是,谷歌很可能没有使用相同的基准测试方法来测量TPU的速度。
无论哪种方式,这些芯片都是Google云平台的一个重要补充。当谷歌于去年4月首次向全世界展示TPU规格的时候,它透露该芯片至少可以运行某些机器学习工作负载,比现有的芯片快15至30倍。这就包括特别适合用于机器学习模型的GPU。GPU的主要制造商包括Nvidia和AMD公司,这两家公司仍然是当今大多数项目的首选。
因此,谷歌的云客户应该能够更快速地培训和运行他们的人工智能软件。谷歌表示,一个TPU可用于在一天之内实施主流ResNet-50图像分类模型,达到可接受的精确度水平。
谷歌已经创建了几个预先优化的神经网络包,让客户可以将其运行在TPU上,其中包括一个ResNet-50版本,以及用于机器翻译、语言建模和识别图像内物体的模型。企业客户也可以使用谷歌的开源TensorFlow机器学习引擎创建自己的人工智能工作负载。
喜欢使用传统图形卡进行人工智能项目的客户,今天也看到了一项新的功能。谷歌为其Kubernetes Engine服务添加了GPU支持,以允许将机器学习模型打包到软件容器中。后一种技术提供了一个轻量级抽象层,使开发人员能够更轻松地推出更新并跨环境迁移应用。
这个新的TPU价格为每小时每单元6.50美元,而通过Kubernetes Engine租赁的GPU将按谷歌现有的每种支持芯片型号收费。
这种芯片对于各种人工智能任务、特别是对于一些计算机工作负载而言的就绪情况,仍然不明确。Moor Insights&Strategy总裁兼首席分析师Patrick Moorhead表示:“TPU是一个很好的试水方式,但并一定适合于运行生产工作负载。GPU是进行训练的最佳方式。锁定到TPU,意味着被GCP和TensorFlow锁定。”
而且谷歌也不是唯一追求自主开发人工智能芯片的公司。芯片巨头英特尔公司一直在推销其最新用于人工智能工作负载的CPU,以及称为FPGA的定制芯片。
据The Information报道称,亚马逊公司正在开发自己的人工智能芯片,该芯片可以帮助其Echo智能音箱和其他使用其Alexa数字助理的硬件在设备上执行更多处理任务,以便它可以比调用云的响应速度更快。
好文章,需要你的鼓励
AI能让够更早,更准确的发现并预测癌变的发生,这也是目前AI医疗的的一个主流发展方向,更早的发现,更准确的预测。最近一项来自美国国立卫生研究院(NIH)的研究就在对肺癌精准预测方向上取得了重大突破
字节跳动联合浙江大学发布了ImmerseGen系统,这是一个能根据文字描述自动生成VR世界的AI工具。该系统采用轻量化代理和RGBA纹理技术,用AI代理协作完成从地形生成到物体布置的全流程,还能添加动态效果和环境音效。相比传统方法,它生成的场景效率提升数十倍,在移动VR设备上达到79帧流畅运行,为VR内容创作带来革命性突破。
Salesforce发布Agentforce 3平台重大升级,新增指挥中心提供AI智能体实时性能监控,支持MCP开放标准实现与数百种企业工具无缝集成。数据显示AI智能体使用量六个月内激增233%,超8000家客户部署该技术。百事可乐等全球企业已将其深度集成到业务运营中。新版本还提供50%更低延迟、增强安全性和200多个预配置行业操作模板,帮助企业快速部署功能性AI智能体。
慕尼黑大学研究团队开发了SwarmAgentic技术,这是首个能够完全自主生成智能体系统的框架,无需人工预设模板。该技术借鉴蜂群智能原理,让AI系统自己决定需要什么角色、如何分工协作。在旅行规划等六项复杂任务测试中,SwarmAgentic表现优异,在旅行规划任务上比现有最佳方法提升261.8%,展现了全自动智能体系统设计的巨大潜力。