甲骨文公司云平台上的服务将很快就能自行调整和打补丁了。这都要归功于甲骨文公司宣布将最近推出的“自主”关系型数据库服务背后的技术扩展到其他产品组合中。
甲骨文表示,专用机器学习模型可以优化性能,在更新公布的时候进行实施,甚至在需要时执行故障排除。此外还有一个用于保护记录中断的备份工具。
甲骨文计划将该技术首先应用于与这个自主关系型数据库搭配的其他数据库。基于云的数据仓库、NoSQL存储和OLTP(在线交易处理)服务的自主版本将于今年推出。
甲骨文表示,实现主要维护任务的自动化,将减少企业为使用这些产品而必须花费的人员工时。通过扩展,这项自主功能还可以减少人为错误带来的风险。甲骨文公司承诺,最终的结果将是可靠性水平的提高。
甲骨文还计划通过提供服务级别协议来确保其运营标准得到满足。具体而言,甲骨文将提供有关正常运行时间、可管理性和性能的保证。例如,如果数据库速度在特定时间段内低于给定阈值,则甲骨文将向受影响的客户提供他们可以兑换其云端账单的积分。
这项新的数据库功能和更加专用的自动化工具一起,用于甲骨文公有云中的其他服务中。例如,一项即将推出的功能将识别企业软件项目中易受攻击的代码,另一项新增功能旨在引入“自定义”集成以连接不同的应用。这些功能计划于今年上半年推出。
除了这个功能集之外,甲骨文还扩展了其云平台的覆盖面。作为扩展计划的一部分,甲骨文还计划开放不少于12座新的数据中心。甲骨文将在美国建立两个云计算设施,在加拿大建立另外两个云计算设施,其余的将在海外建设。扩张路线图中的国家包括荷兰、瑞士、中国、印度、日本、沙特阿拉伯、新加坡和韩国。
甲骨文需要赶上云计算竞争对手,这些竞争对手也在建设新的数据中心以加强对市场的控制。而且,他们在收入方面也在快速增长。亚马逊上周表示,其AWS云部门年营收为200亿美元,谷歌公司表示其云部门营收达到每季度10亿美元。
此外,他们花费大量资金建设所需的基础设施,以保持这一势头。根据华尔街日报援引RBC Capital Markets的数据,约有19家云服务提供商在2017年数据中心和其他云基础设施上的投资额为638亿美元,较2016年增长22%。今年,这一数字将上升27%达到810亿美元。
而且甲骨文肯定会看到更多的竞争,特别是让云操作变得更加自动化。
Constellation Research公司副总裁兼首席分析师Holger Mueller说:“甲骨文在云方面是后来者,后来者必须做点什么以引起人们的关注。甲骨文所谓的自驱动或者说自主型数据库做到了这一点,很不错。值得注意的是,竞争对手还没有在这方面与甲骨文的愿景匹敌。但今年年初,我预计所有基础架构和平台厂商的类似产品将在今年晚些时候推出。”
甲骨文自身是否可以提供一切具有前景的产品,这一点还不明朗。“它必须锁定机器学习功能,以实现自驱动堆栈的愿景,并从根本上改变软件的创建和集成方式,以及数据移动、接口和分析的方式”,Mueller说。
好文章,需要你的鼓励
开源数据库服务商Percona为PostgreSQL推出透明数据加密(TDE)扩展,填补了该数据库在企业级安全功能方面的空白。该pg_tde扩展目前已包含在Percona PostgreSQL发行版中,可加密磁盘上所有数据库文件,并支持与主流密钥管理服务集成。Percona正努力将此功能纳入PostgreSQL主发行版,帮助用户满足GDPR等法规的加密要求。
新加坡国立大学研究团队开发了SPIRAL框架,通过让AI与自己对弈零和游戏来提升推理能力。实验显示,仅训练AI玩简单扑克游戏就能让其数学推理能力提升8.6%,通用推理提升8.4%,且无需任何数学题目作为训练材料。研究发现游戏中的三种推理模式能成功转移到数学解题中,为AI训练提供了新思路。
西部数据首席产品与工程官Ahmed Shihab表示,公司HAMR技术进展顺利,OptiNAND能提供容量优势。HAMR技术物理原理已突破,正进行制造工艺优化。相比希捷10盘片技术,西数11盘片设计提供更大发展空间,可更快推向市场。OptiNAND结合UltraSMR算法可实现更高单盘容量。公司采取保守策略,注重可靠性,客户已完成相关软件认证。硬盘在数据经济中仍是基础,在视频监控等写密集型应用中具备成本和耐久性优势。
同济大学团队开发的GIGA-ToF技术通过融合多帧图像的"图结构"信息,创新性地解决了3D相机噪声问题。该技术利用图像间的不变几何关系,结合深度学习和数学优化方法,在合成数据集上实现37.9%的精度提升,并在真实设备上展现出色泛化能力,为机器人、AR和自动驾驶等领域提供更可靠的3D视觉解决方案。