至顶网软件频道消息:谷歌和同属Alphabet集团专注于健康的Verily Life Sciences共同进行的一项研究表明,深度学习算法可以通过分析个体的视网膜照片准确预测心脏病。
这些公司的科学家在《自然-生物医学工程》(《Nature Biomedical Engineering》)上发表的一篇新论文中详细介绍了他们的发现:“通过深度学习视网膜眼底照片预测引起心血管疾病的危险因素”。
视网膜眼底照片包括眼睛的血管,这篇论文显示可以利用血管准确预测心血管疾病的危险因素,包括其人是否吸烟、血压、年龄、性别以及某人是否曾经有过心脏病发作。该算法也能够推断出一个人的种族,这也是心血管相关疾病的一个因素。
谷歌的大脑团队(Brain Team)产品经理Lily Peng写道:“用来自284,335名患者的数据对深度学习算法进行训练,我们能够通过视网膜照片对两个来自12,026名和999名患者的独立数据集进行心血管疾病危险因素的预测,而且预测的准确度高得惊人。”
这个数据集包括来自英国Biobank数据库的48101名患者和来自EyePACS数据库的236244名患者。
正如文章指出的那样,还有一些其他的方法可以通过患者的病史和血液样本评估心血管疾病的风险,但有时关键信息是缺失的,如胆固醇水平。
视网膜图像扫描可以为发现心脏疾病信号提供一种快速、廉价且无创的方式。
鉴于该算法可以准确预测风险因素,科学家们还训练该算法来预测主要心血管疾病的发作,如五年内心脏病发作。
Peng写道:“我们的算法能够在70%的时间内挑选出曾经发作过心血管疾病的患者。这种准确程度已经接近了其他的心血管疾病风险计算方式,而这些方式需要抽血测量胆固醇。”
研究人员还使用注意力图来研究算法如何进行预测,比如是否关注通过血管来预测年龄、吸烟状况和血压。
正如Peng所说,打开黑匣子并且解释清楚预测是如何进行的,应该会让医生对该算法更有信心。
Verily的心血管健康创新负责人Michael McConnell表示,这项研究很有前途的,但现在还处于早期阶段。
他指出:“在进入临床之前,必须还要完成更多的工作,在更大范围的患者群体中开发和验证这些发现。”
然而,如果进一步的研究证实了这些发现,视网膜图像的使用可以减少医生讨论患者预防措施的障碍。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。