美国当地时间3月14日,微软公司的研究人员透露,他们已经开发出了能够一种能够翻译文本的人工智能,它翻译的准确性可以与人类相媲美。
该系统由三个独立的团队构建,旨在将中文新闻文章的句子翻译成英文。它结合了几种新兴的神经网络方法以达到人类的准确性,其中包括微软专门为该项目开发的一些方法。
黄学东(音译:Xuedong Huang)(如图)是负责微软语音、自然语言和机器翻译工作的技术专家,他表示该系统是这个最具挑战的自然语言处理任务中的一个“重要里程碑”。他表示:“让机器翻译能够达到人类的水平是我们所有人的梦想。”他说:“只是我们没有意识到我们能够这么快就实现这一点。”
这个系统在将英文文本翻译成中文的时候,用到了一种被称为双重学习的方法。这种方法提供了一种参考,让人工智能可以检查自己的准确性并从错误中学习。同样是微软发明的另一项技术让这个系统能够通过重复来优化翻译的内容,这种方法类似于人类修改自己写作内容的方式。
该公司已经证明,这个系统可以通过翻译来自被称为newstest2017的研究数据集中的文本达到人类的翻译准确度。测试包含了多轮评估,每一轮评估都会查看人工智能翻译的几百个句子。根据微软的说法,一个由外部语言学家组成的团队将人工智能翻译的结果和人类的翻译结果进行比对,以此进行验证。
让说英语的人能够看懂用中文写就的新闻文章还只是冰山一角。微软计划利用这项创新技术,让这个系统能够在其他语言的翻译上也达到人类的准确度,并将其纳入到该公司的产品之中。
该公司提供了类似于谷歌翻译的免费翻译服务,还有面向企业的商业版本。而且,微软在星期一还透露了计划推出为其团队聊天服务推出内联翻译功能,这样一来,使用不同语言的专业人员就可以更轻松地进行沟通了。
这个新的人工智能系统的技术理论上说也可以应用于语音,但是微软的研究人员周明(音译:Ming Zhou)表示,实时翻译仍然是一个挑战,这个问题还有待解决。无论如何,该公司已经表明人工智能能够媲美人类准确度的这一事实代表了这个研究方向上的一个重大里程碑。
这一事实也标志着微软最近在深度学习领域获得的一系列突破性的成果。此前,该公司开发的人工智能在一项斯坦福大学的阅读测试中达到了人类参与者的平均水平,此项测试被用于评估神经网络的基准。这一成就比来自中国的网络巨头阿里巴巴集团控股有限公司的团队晚了一天,那个团队是首个在该测试中达到这个里程碑的团队。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。