至顶网软件频道消息:最近,微软Azure首席技术官Mark Russinovich表示,人工智能(AI)和机器学习(ML)的兴起源于开源人工智能和机器学习软件。Core ML、Google TensorFlow和ONNX等开源程序正在推动着人工智能和机器学习的发展。现在,Linux基金会在洛杉矶举行的开放网络峰会上宣布成立一个新组织:LF深度学习基金会(LF Deep Learning Foundation),以进一步推动开源人工智能和机器学习。
此外,Linux基金会还宣布了Acumos AI项目,这是一个平台和开源框架,可以轻松构建、共享和部署人工智能应用。
Acumos是通过对开箱即用的通用人工智能环境所需的基础架构堆栈和组件实施标准化来实现这一点。具体来说,Acumos包装了TensorFlow和SciKit Learn等工具包,并使用通 API对其进行建模,从而使开发人员能够无缝连接这些工具。这让数据科学家和模型训练人员可以将精力集中在核心能力上,而不必担心底层人工智能/机器学习基础。
该项目致力于通过轻松创建、分享、发现和应用机器学习、深度学习和分析模型,让所余人都能拥有人工智能的力量。据AT&T称:“我们开源Acumos平台的目标,是使构建和部署人工智能应用与创建一个网站一样简单。”Linux基金会将负责Acumos AI平台和Acumos Marketplace,以支持该项目的生态系统。
AT&T和Tech Mahindra正在验证Acumos的初始代码。第一批Acumos代码已经为下载做好了准备。
展望未来,百度预计将贡献人工智能/机器学习代码,以充分利用Kubernetes的弹性调度以及开源PaddlePaddle的容错功能。此外,由腾讯和北京大学针对大数据/模型联合开发的高性能分布式ML平台“Angel”项目也被纳入Acumos。
“我们很高兴能够提供深度学习的基础,为人工智能、机器学习和深度学习生态系统中的大量项目提供长期战略和支持,”Linux基金会执行主任Jim Zemlin在一份声明中表示。
该组织的创始成员包括Amdocs、AT&T、B.Yond、百度、华为、诺基亚、Tech Mahindra、腾讯、Univa和中兴。借助该组织,成员们将创造一个中立空间,其中工具和基础架构的制造商和维护人员可以共同协作,进一步加速开源、深度学习技术的采用。
如果可行的话,这将使人工智能开发人员更容易获得人工智能/机器学习,而不需要他们完成开源软件的实质工作。从某种程度上来说,这就像DevOps让开发人员能够专注于他们自己的项目,而DevOps工具使他们能够快速轻松地启动项目所需的基础架构。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
上海交通大学研究团队发布了突破性的科学推理数据集MegaScience,包含125万高质量实例,首次从12000本大学教科书中大规模提取科学推理训练数据。该数据集显著提升了AI模型在物理、化学、生物等七个学科的推理能力,训练的模型在多项基准测试中超越官方版本,且具有更高的训练效率。研究团队完全开源了数据集、处理流程和评估系统。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。