至顶网软件频道消息:最近,微软Azure首席技术官Mark Russinovich表示,人工智能(AI)和机器学习(ML)的兴起源于开源人工智能和机器学习软件。Core ML、Google TensorFlow和ONNX等开源程序正在推动着人工智能和机器学习的发展。现在,Linux基金会在洛杉矶举行的开放网络峰会上宣布成立一个新组织:LF深度学习基金会(LF Deep Learning Foundation),以进一步推动开源人工智能和机器学习。
此外,Linux基金会还宣布了Acumos AI项目,这是一个平台和开源框架,可以轻松构建、共享和部署人工智能应用。
Acumos是通过对开箱即用的通用人工智能环境所需的基础架构堆栈和组件实施标准化来实现这一点。具体来说,Acumos包装了TensorFlow和SciKit Learn等工具包,并使用通 API对其进行建模,从而使开发人员能够无缝连接这些工具。这让数据科学家和模型训练人员可以将精力集中在核心能力上,而不必担心底层人工智能/机器学习基础。
该项目致力于通过轻松创建、分享、发现和应用机器学习、深度学习和分析模型,让所余人都能拥有人工智能的力量。据AT&T称:“我们开源Acumos平台的目标,是使构建和部署人工智能应用与创建一个网站一样简单。”Linux基金会将负责Acumos AI平台和Acumos Marketplace,以支持该项目的生态系统。
AT&T和Tech Mahindra正在验证Acumos的初始代码。第一批Acumos代码已经为下载做好了准备。
展望未来,百度预计将贡献人工智能/机器学习代码,以充分利用Kubernetes的弹性调度以及开源PaddlePaddle的容错功能。此外,由腾讯和北京大学针对大数据/模型联合开发的高性能分布式ML平台“Angel”项目也被纳入Acumos。
“我们很高兴能够提供深度学习的基础,为人工智能、机器学习和深度学习生态系统中的大量项目提供长期战略和支持,”Linux基金会执行主任Jim Zemlin在一份声明中表示。
该组织的创始成员包括Amdocs、AT&T、B.Yond、百度、华为、诺基亚、Tech Mahindra、腾讯、Univa和中兴。借助该组织,成员们将创造一个中立空间,其中工具和基础架构的制造商和维护人员可以共同协作,进一步加速开源、深度学习技术的采用。
如果可行的话,这将使人工智能开发人员更容易获得人工智能/机器学习,而不需要他们完成开源软件的实质工作。从某种程度上来说,这就像DevOps让开发人员能够专注于他们自己的项目,而DevOps工具使他们能够快速轻松地启动项目所需的基础架构。
好文章,需要你的鼓励
文章探讨了CIO在2025年应该重点投资的五个AI领域:可信工作流的代理AI、智能文档管理、营销客户数据需求、从数据驱动转向AI驱动、重新审视IT架构以支持AI目标。这些投资可以在短期内带来效益,同时成为长期财务回报的倍增器。CIO需要在这些领域制定务实的AI应用策略,简化平台,加强风险管理,以应对未来的挑战和机遇。
Instabase 公司完成 1 亿美元 D 轮融资,估值 12.4 亿美元。该公司提供非结构化数据处理平台,可从多种文件中提取信息并标准化。新资金将用于增强数据提取、分析和搜索功能,以满足企业 AI 需求。
人工智能在建筑设计领域正展现出惊人潜力。从生成令人赏心悦目的建筑效果图,到创造无限游戏世界,AI 正逐步改变设计流程。尽管人类仍是核心创作者,但 AI 辅助工具正迅速普及,未来可能会大幅提升设计效率和质量。这一趋势引发了对 AI 取代人类建筑师的担忧,也带来了硬件革命和地缘政治影响。
研究显示,高收入公司的CEO正将人工智能置于业务战略的核心地位。欧美企业声称已具备AI项目的基础条件。专家建议避免过度乐观,关注投资回报,构建稳健的数据基础,并优先考虑循序渐进的推广策略。研究还发现,最成功的公司往往是那些高层领导有意识地不直接参与AI战略制定的公司。