至顶网软件频道消息:谷歌研究人员开发了一种应用人工智能的新方法,可以增强视频会议等多项服务。
该研究与已知的“鸡尾酒会效应(cocktail party effect)”有关。所谓“鸡尾酒会效应”,指的是人的一种听力选择能力,在这种情况下,注意力集中在某一个人的谈话之中而忽略背景中其他的对话或噪音,该效应揭示了人类听觉系统中令人惊奇的能力,即我们可以在噪声中谈话。
同理,谷歌的这项研究可以让人工智能模仿大脑,在一个充满干扰的环境中(例如到处都有其他的人在说话),将注意力集中在一个单独的物体(例如某一个人)的能力。
人工智能模型通常很难以相同的效果调整外部输入,特别是当涉及包含多个声音的音频流时更是如此。这已被证明是语音识别领域的主要挑战,这是当今神经网络的主要应用领域之一。
谷歌表示,其研究人员通过开发一种考虑到不同类型信息的深度学习模型的做法克服了这一障碍:视觉输入。该技术被设计用于处理视频,该人工智能可以分析剪辑中显示的人物的嘴部动作,以使每个人都能与他们发出的声音进行匹配。一旦它建立起了必要的关联关系,模型就可以将单个的语音轨道分开。
教会人工智能有效地完成这项任务并不是一件容易的事。谷歌的研究人员从YouTube上收集了100,000个视频,提取了每个包含每个发言人声音的音频片段,然后将这些片段拼接成具有多个音轨的“合成鸡尾酒会”。该小组使用这个数据集来训练模型,以便在各种条件下都能够将说话者的声音与其他声音分开。
谷歌表示,结果是用户可以点击他们希望听到的人的脸部,并让视频中的其他说话的人自动静音。该技术对这家搜索巨头来说有很多潜在的用途。
对于初学者来说,谷歌可以在YouTube中使用这个人工智能版本,让用户调出剪辑中的一些声音。对于在嘈杂的环境中录制的视频来说,这可能是一个特别大的便利,在这样的环境中有时候会难以听到发言者的声音。
该人工智能也有可能会改善Hangouts和Meet——谷歌的视频会议服务——的用户体验,它能够让会议的参与者更容易地专注于特定的人的语音。该搜索巨头甚至相信这项技术可以应用于医疗领域,例如可以开发出更复杂的助听器。
好文章,需要你的鼓励
GitHub CEO声称AI将承担所有编程工作,但现实中AI编程工具实际上降低了程序员的生产效率。回顾编程语言发展史,从Grace Hopper的高级语言到Java等技术,每次重大突破都曾因资源限制和固有思维遭到质疑,但最终都证明了抽象化的价值。当前AI编程工具面临命名误导、过度炒作和资源限制三重困扰,但随着技术进步,AI将有助于消除思想与结果之间的障碍。
本研究针对大语言模型中普遍存在的偏见问题,提出了一套完整的数据和AI治理框架。研究发现当前主流AI模型中37.65%的输出存在偏见,其中33.7%具有中高风险。通过开发BEATS检测系统和全生命周期治理方案,为AI系统建立了从数据收集到部署监控的完整"公平性保障体系",旨在让AI技术更好地服务全人类而非延续社会偏见。
英国林肯大学正在开发一种革命性的虚拟现实环境,让非专家通过身体演示来训练AI收割机器人。这种技术已在加拿大杂货店和日本便利店试用,未来可能彻底改变工作形态。虽然能降低危险工作的风险,但也带来就业替代、工资削减等问题。许多低薪工作将被远程操控的机器人取代,影响移民模式和劳工组织。这项技术仍处于早期阶段,但将在未来几年对工作产生深远影响。
浙江大学团队开发的HarmonyGuard框架首次解决了AI网络代理的安全与效率平衡难题。该系统通过三个协作的AI代理,实现自适应安全策略更新和双目标优化,在真实测试中将策略合规率提升38%,任务完成率提升20%,为构建既高效又安全的智能助手奠定重要基础。