至顶网软件频道消息:Infervision正在进行开创性的工作,借助机器学习算法诊断和治疗中风。这家人工智能医学影像专业公司已经完成了Head CT Augmented Screening平台的成功试点。Infervision希望通过让医生更快速更准确地诊断中风,并评估中风所造成的损害,让这项技术快速普及并挽救生命。
除了这个采用机器学习检测中风的成功案例之外,此前有报道称Infervision的平台能够在X射线和CT扫描中检测肺癌的早期征兆。
Infervision使用超过100,000个带注释的医学图像扫描来训练算法,该算法得到了更多实施的数据,从而可以更加有效地诊断出两种主要类型的中风——出血性中风和缺血性中风。
Infervision创始人兼首席执行官Chen Kuan表示:“X射线是一种非常古老的检测方式。例如在中国,已经超过15年没有人在学术会议上胸部X射线检查了。直到最近人工智能的到来,人工智能帮助放射科医师发现了他们以前无法看到的问题。因此,我们非常自豪地看到,放射科医生开始讨论一些涉及人工智能的非常有趣和神奇的案例。”
这绝对是新技术可以释放长久保存数据的价值的一种极好例子。
这种方法解决的主要问题之一,是如何测量出血性中风的失血量。当中风发作后,每秒钟都很关键,医生通常会使用一个简单的数学公式来尽可能最好地“猜测”失血多少。
研究表明,出血量评估得越准确,患者恢复的可能性就越大,这是由于出血量对治疗方法的影响。
Kuan解释说:“出血量与死亡率和干预的最佳方式密切相关。”
“超过30毫升的出血量与死亡率密切相关,最好是使用积极的手术方法进行干预。问题是,在我们测试的过程中,我们要求放射科医师做这方面的计算,发现在某些情况下,误差幅度甚至超过了30毫升。”
Infervision不仅希望这些算法通过“学习”变得比人类放射科医生的评估更加精准,而且能够在紧急情况下更快地执行。
另一个优点,是可以通过X射线和CT扫描进行诊断,而不是单独进行MRI扫描,这是目前诊断出血性(血块)中风的唯一方法。MRI设备的可用性较低,许多医院没有足够的资源让这种设备一天24小时处于运行状态。
我问Kuan,放射科医生和其他临床工作人员在面对这项技术是作何反应的,因为这些技术似乎能够取代他们的一些技能。
他说:“他们很兴奋兴奋。两三个星期前,在中国举行了一个放射科医师大会,很多人对我们做的事情兴奋不已。他们意识到,我们正在帮助他们进行诊断,同时也在针对患者实施治疗计划方面提供了帮助。”
事实上,Infervision在中国的试验结果也将于本周芝加哥举行的北美放射学会年会上公布。Kuan希望也能在这次会议中得到参会者的热烈回应,希望不久之后越来越多的人有机会从这项技术中受益。
“目前我们已经扩大到在四家中国医院测试这项技术,初步结果令人振奋,我们很快就会扩大到更多的医院,并有望进入美国。”
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。