至顶网软件频道消息:Infervision正在进行开创性的工作,借助机器学习算法诊断和治疗中风。这家人工智能医学影像专业公司已经完成了Head CT Augmented Screening平台的成功试点。Infervision希望通过让医生更快速更准确地诊断中风,并评估中风所造成的损害,让这项技术快速普及并挽救生命。
除了这个采用机器学习检测中风的成功案例之外,此前有报道称Infervision的平台能够在X射线和CT扫描中检测肺癌的早期征兆。
Infervision使用超过100,000个带注释的医学图像扫描来训练算法,该算法得到了更多实施的数据,从而可以更加有效地诊断出两种主要类型的中风——出血性中风和缺血性中风。
Infervision创始人兼首席执行官Chen Kuan表示:“X射线是一种非常古老的检测方式。例如在中国,已经超过15年没有人在学术会议上胸部X射线检查了。直到最近人工智能的到来,人工智能帮助放射科医师发现了他们以前无法看到的问题。因此,我们非常自豪地看到,放射科医生开始讨论一些涉及人工智能的非常有趣和神奇的案例。”
这绝对是新技术可以释放长久保存数据的价值的一种极好例子。
这种方法解决的主要问题之一,是如何测量出血性中风的失血量。当中风发作后,每秒钟都很关键,医生通常会使用一个简单的数学公式来尽可能最好地“猜测”失血多少。
研究表明,出血量评估得越准确,患者恢复的可能性就越大,这是由于出血量对治疗方法的影响。
Kuan解释说:“出血量与死亡率和干预的最佳方式密切相关。”
“超过30毫升的出血量与死亡率密切相关,最好是使用积极的手术方法进行干预。问题是,在我们测试的过程中,我们要求放射科医师做这方面的计算,发现在某些情况下,误差幅度甚至超过了30毫升。”
Infervision不仅希望这些算法通过“学习”变得比人类放射科医生的评估更加精准,而且能够在紧急情况下更快地执行。
另一个优点,是可以通过X射线和CT扫描进行诊断,而不是单独进行MRI扫描,这是目前诊断出血性(血块)中风的唯一方法。MRI设备的可用性较低,许多医院没有足够的资源让这种设备一天24小时处于运行状态。
我问Kuan,放射科医生和其他临床工作人员在面对这项技术是作何反应的,因为这些技术似乎能够取代他们的一些技能。
他说:“他们很兴奋兴奋。两三个星期前,在中国举行了一个放射科医师大会,很多人对我们做的事情兴奋不已。他们意识到,我们正在帮助他们进行诊断,同时也在针对患者实施治疗计划方面提供了帮助。”
事实上,Infervision在中国的试验结果也将于本周芝加哥举行的北美放射学会年会上公布。Kuan希望也能在这次会议中得到参会者的热烈回应,希望不久之后越来越多的人有机会从这项技术中受益。
“目前我们已经扩大到在四家中国医院测试这项技术,初步结果令人振奋,我们很快就会扩大到更多的医院,并有望进入美国。”
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。