至顶网软件频道消息:Infervision正在进行开创性的工作,借助机器学习算法诊断和治疗中风。这家人工智能医学影像专业公司已经完成了Head CT Augmented Screening平台的成功试点。Infervision希望通过让医生更快速更准确地诊断中风,并评估中风所造成的损害,让这项技术快速普及并挽救生命。
除了这个采用机器学习检测中风的成功案例之外,此前有报道称Infervision的平台能够在X射线和CT扫描中检测肺癌的早期征兆。
Infervision使用超过100,000个带注释的医学图像扫描来训练算法,该算法得到了更多实施的数据,从而可以更加有效地诊断出两种主要类型的中风——出血性中风和缺血性中风。
Infervision创始人兼首席执行官Chen Kuan表示:“X射线是一种非常古老的检测方式。例如在中国,已经超过15年没有人在学术会议上胸部X射线检查了。直到最近人工智能的到来,人工智能帮助放射科医师发现了他们以前无法看到的问题。因此,我们非常自豪地看到,放射科医生开始讨论一些涉及人工智能的非常有趣和神奇的案例。”
这绝对是新技术可以释放长久保存数据的价值的一种极好例子。
这种方法解决的主要问题之一,是如何测量出血性中风的失血量。当中风发作后,每秒钟都很关键,医生通常会使用一个简单的数学公式来尽可能最好地“猜测”失血多少。
研究表明,出血量评估得越准确,患者恢复的可能性就越大,这是由于出血量对治疗方法的影响。
Kuan解释说:“出血量与死亡率和干预的最佳方式密切相关。”
“超过30毫升的出血量与死亡率密切相关,最好是使用积极的手术方法进行干预。问题是,在我们测试的过程中,我们要求放射科医师做这方面的计算,发现在某些情况下,误差幅度甚至超过了30毫升。”
Infervision不仅希望这些算法通过“学习”变得比人类放射科医生的评估更加精准,而且能够在紧急情况下更快地执行。
另一个优点,是可以通过X射线和CT扫描进行诊断,而不是单独进行MRI扫描,这是目前诊断出血性(血块)中风的唯一方法。MRI设备的可用性较低,许多医院没有足够的资源让这种设备一天24小时处于运行状态。
我问Kuan,放射科医生和其他临床工作人员在面对这项技术是作何反应的,因为这些技术似乎能够取代他们的一些技能。
他说:“他们很兴奋兴奋。两三个星期前,在中国举行了一个放射科医师大会,很多人对我们做的事情兴奋不已。他们意识到,我们正在帮助他们进行诊断,同时也在针对患者实施治疗计划方面提供了帮助。”
事实上,Infervision在中国的试验结果也将于本周芝加哥举行的北美放射学会年会上公布。Kuan希望也能在这次会议中得到参会者的热烈回应,希望不久之后越来越多的人有机会从这项技术中受益。
“目前我们已经扩大到在四家中国医院测试这项技术,初步结果令人振奋,我们很快就会扩大到更多的医院,并有望进入美国。”
好文章,需要你的鼓励
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。
这项由中国人民大学高瓴人工智能学院研究团队发表的研究解决了大语言模型评判中的自我偏好问题。研究提出了DBG分数,通过比较模型给自身回答的分数与黄金判断的差异来测量偏好度,有效分离了回答质量与自我偏好偏差。实验发现,预训练和后训练模型都存在自我偏好,但大模型比小模型偏好度更低;调整回答风格和使用相同数据训练不同模型可减轻偏好。研究还从注意力分析角度揭示了自我偏好的潜在机制,为提高AI评判客观性提供了重要指导。
这篇研究提出了DenseDPO,一种改进视频生成模型的新方法,通过三大创新解决了传统方法中的"静态偏好"问题:使用结构相似的视频对进行比较,采集细粒度的时序偏好标注,并利用现有视觉语言模型自动标注。实验表明,DenseDPO不仅保留了视频的动态性,还在视觉质量方面与传统方法相当,同时大大提高了数据效率。这项技术有望推动AI生成更加自然、动态的视频内容。