至顶网软件频道消息:Facebook使用Instagram上数十亿公开的照片来训练人工智能(AI)对图像自行分类的算法,这些照片包含Instagram用户提供的17000个井号标签。
训练计算机做人们通常做的事情——例如识别照片中的内容——通常需要为其提供大量数据。但这些数据必须由人类进行标记,而这是需要花费时间和成本的。Facebook开发了一种新技术,让员工不必坐下来对每张图片进行分类。
本周在美国加州圣何塞举行的Facebook F8大会上,Facebook首席技术官Mike Schroepfer表示:“在计算机视觉领域取得进步的最大限制因素——就和很多人工智能领域一样——就是我们几乎完全依赖于手动标记的、人为组织的数据集。这意味着,如果一个人没有花时间对图像中特定的事物做标记,即使是最先进的计算机视觉系统,也无法在运行时检测到该事物,因为系统在训练集中并没有看到这个事物。”
Schroepfer补充道:“我们已经开发了一些具有突破性的技术,可以以前所未有的规模对公开标签图像进行处理。我们已经使用一套公开的35亿张图像进行训练。”
根据Wired的说法,Instagram数据集比Google用来训练图像算法的巨大缓存还要大10倍。
Facebook应用机器学习部门工程总监Srinivas Narayanan补充说:“我们现在打造了世界上最好的计算机视觉系统,它在ImageNet上获得了84.5%的最高分数。ImageNet是一个广泛用于基准测试的数据集。”
Schroepfer说,Facebook已经在其平台上使用计算机视觉系统来发现需要删除的“坏内容”——可能包括裸体和与恐怖主义有关的内容。
好文章,需要你的鼓励
国际能源署发布的2025年世界能源展望报告显示,全球AI竞赛推动创纪录的石油、天然气、煤炭和核能消耗,加剧地缘政治紧张局势和气候危机。数据中心用电量预计到2035年将增长三倍,全球数据中心投资预计2025年达5800亿美元,超过全球石油供应投资的5400亿美元。报告呼吁采取新方法实现2050年净零排放目标。
维吉尼亚理工学院研究团队对58个大语言模型在单细胞生物学领域的应用进行了全面调查,将模型分为基础、文本桥接、空间多模态、表观遗传和智能代理五大类,涵盖细胞注释、轨迹预测、药物反应等八项核心任务。研究基于40多个公开数据集,建立了包含生物学理解、可解释性等十个维度的评估体系,为这个快速发展的交叉领域提供了首个系统性分析框架。
AMD首席执行官苏姿丰在纽约金融分析师日活动中表示,公司已准备好迎接AI浪潮并获得传统企业计算市场更多份额。AMD预计未来3-5年数据中心AI收入复合年增长率将超过80%,服务器CPU收入份额超过50%。公司2025年预期收入约340亿美元,其中数据中心业务160亿美元。MI400系列GPU采用2纳米工艺,Helios机架系统将提供强劲算力支持。
西湖大学王欢教授团队联合国际研究机构,针对AI推理模型内存消耗过大的问题,开发了RLKV技术框架。该技术通过强化学习识别推理模型中的关键"推理头",实现20-50%的内存缩减同时保持推理性能。研究发现推理头与检索头功能不同,前者负责维持逻辑连贯性。实验验证了技术在多个数学推理和编程任务中的有效性,为推理模型的大规模应用提供了现实可行的解决方案。